首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three new coordination polymers [M(Pht)(1-MeIm)2]n (where M=Cu (1), Zn (2), Co (3); Pht2−=dianion of o-phthalic acid; 1-MeIm=1-methylimidazole) and two compounds [M(1-MeIm)6](HPht)2 · 2H2O (M=Co (4), Ni (5)) have been synthesized and characterized by X-ray crystallography. The structures of 1-3 (2 is isostructural to 3) consist of [M(1-MeIm)2] building units connected by 1,6-bridging phthalate ions to form infinite chains. In complex 1, each copper(II) center adopts a square coordination mode of N2O2 type by two O atoms from different phthalate ions and two N atoms of 1-MeIm, whereas in 3 two independent metal atoms are tetrahedrally (N2O2) coordinated to a pair of Pht ligands and a pair of 1-MeIm molecules. There are only van der Waals interactions between the chains in 1, while the three-dimensional network in 3 is assembled by C-H?O contacts. In contrast to polymers 1-3 the structures of 4 and 5 (complexes are also isostructural) are made up of the [M(1-MeIm)6]2+ cation, two hydrogen phthalate anions (HPht) and two H2O solvate molecules. The coordination around each metal(II) atom is octahedral with six nitrogen atoms of 1-MeIm. Extended hydrogen bonding networks embracing the solvate water molecules and a phthalate residue as well as the weak C-H?O interactions stabilize the three-dimensional structures. Magnetic studies clearly show that the magnetic ions do not interact with each other. Furthermore, in compound 4 we have another example of a highly anisotropic Co2+ ion with a rhombic g-tensor and large zero-field-splitting. The complexes were also characterized by IR and 1H NMR spectroscopy, thermogravimetric analysis, and all data are discussed in the terms of known structures.  相似文献   

3.
Spectral studies of cobalt (II)- and Nickel (II)-metallothionein   总被引:1,自引:0,他引:1  
The zinc and cadmium of native rabbit metallothionein-1 were replaced stoichiometrically with either cobalt (II) or nickel (II). The electronic, magnetic circular dichroic (MCD), and electron spin resonance spectra of Co (II)-metallothionein reflect distorted tetrahedral coordination of the cobalt atoms. Both the d-d and charge-transfer spectral regions closely resemble those of simple cobalt-tetrathiolate complexes, implying that their coordination chemistry is analogous. Ni (II) complex ions and Ni (II)-metallothionein similarly exhibit analogous MCD bands in the d-d region. The circular dichroic bands associated with ligand-metal charge-transfer transitions in the non-d-d region of Co (II)- and Ni (II)-metallothionein afford additional evidence for the similarity in tetrahedral microsymmetry of the two metal derivatives. The known ratio of 20 thiolate ligands to 7 metal ions, in conjunction with the spectral evidence for tetrathiolate coordination in metallothionein, represents good evidence that these metal thiolates are organized in clusters.  相似文献   

4.
The nucleocapsid protein (NCP) from Mason-Pfizer monkey virus (MPMV) contains two evolutionary invariant Cys-X2-Cys-X4-His-X4-Cys retroviral-type zinc finger structures, where the Cys and His residues provide ligands to a tetrahedrally coordinated Zn(II) ion. The N-terminal zinc finger (F1) of NCP from MPMV contains an immediately contiguous Cys in the -1 position relative to the start of this conserved motif: Cys-Cys-X2-Cys-X4-His-X4-Cys. Metal complexes of 18-amino acid peptides which model the native zinc finger sequence, SER-Cys-X2-Cys-X4-His-X4-Cys (F1_SC), and non-native Cys-SER-X2-Cys-X4-His-X4-Cys (F1_CS) and SER-SER-X2-Cys-X4-His-X4-Cys (F1_SS) sequences have been spectroscopically characterized and compared to the native two-zinc-finger protein fragment, MPMV NCP 21-80. All Co(II)-substituted peptide complexes adopt tetrahedral ligand geometries and have S-MCo(II) ligand-to-metal charge-transfer (LMCT) transition intensities consistent with three Co(II)-S bonds for F1_SC and F1_CS. The non-native F1_CS peptide binds Co(II) with KCo=1.5᎒6 M-1, comparable to that of the native complex, and 걄-fold tighter than F1_SS. Like the Co(II) derivative, the absorption spectrum of Ni(II)-substituted NCP 21-80 is most consistent with tetrahedral Ni(II) complexes with multiple thiolate donors. In contrast, Ni(II) complexes of F1_SC and F1_CS exhibit a single absorption band in the 400-550 nm region ()겨-300 M-1 cm-1), distinct in the two complexes, assignable to a degenerate d-d transition envelope characteristic of non-native square-planar coordination geometry, and an intense LMCT transition in the UV ()255ᄾ,000 M-1 cm-1). Cd(II) complexes have intense absorption in the UV (5max=233 nm), with absolute intensities consistent with 񬩈 M-1 cm-1 per Cd(II)-S bond. 113Cd NMR spectroscopy of 113Cd MPMV NCP gives '=649 ppm, consistent with S3N coordination. Co(II) and Cd(II) complexes of non-native F1_CS peptides are more sensitive to oxidation by O2, relative to F1_SC, suggestive of a higher lability in the non-native chelate. The implications of these findings for the evolutionary conservation of this motif are discussed.  相似文献   

5.
Methods have been developed for the addition of different metal ion species to the three distinct pairs of metal sites (A, B, and C) found in the dimer of apoalkaline phosphatase. This allows the preparation of hybrid alkaline phosphatases in which A and B sites of each monomer contain two different species of metal ion or the A and B sites of one monomer contain the same species of metal ion, while the adjacent monomer contains a second species. The following hybrids have been characterized in detail: (Zn(II)ACd(II)B)2 alkaline phosphatase, (Zn(II)AMg(II)B)2 alkaline phosphatase, (Cd(II)AZn(II)B)2 alkaline phosphatase, and (Zn(II)AZn(II]B)(Cd(II)ACd(II)B) alkaline phosphatase. 31P and, where appropriate, 113Cd NMR have been used to monitor the behavior of the covalent (E-P) and noncovalent (E X P) phosphointermediates and of the A and B metal ions. From the pH dependencies of the E-P in equilibrium E X P in equilibrium E + Pi equilibria, it is clear that A site metal is the dominant influence in dephosphorylation of E-P and may have a coordinated water molecule, which ionizes to ZnOH- at a low pH providing the nucleophile for dephosphorylation. A site metal also serves to coordinate phosphate in the E X P complex. B site metal has a much smaller effect on dephosphorylation rates, although it does dramatically alter the Pi dissociation rate, which is the rate-limiting step for the native enzyme at alkaline pH, and is probably important in neutralizing the charge on the phosphoseryl residue, thus potentiating the nucleophilic attack of the OH- bound at A site. Phosphate dissociation is slowed markedly by replacement of B site zinc by cadmium. There is clear evidence for long range effects of subunit-subunit interactions, since metal ion and phosphate binding at one active center alters the environments of A and B site metal ions and phosphoserine at the other active site.  相似文献   

6.
7.
8.
Abstract

The first fully energy-minimized structures for a series of structurally related metal complexes of the important mammalian metal binding protein metallothionein are described. The structures were calculated based on structural information obtained from existing spectroscopic and crystallographic data, and minimized using molecular mechanics (MM2) techniques. A two domain structure, with stoichiometrics of M(II)3?(Scys)9 and M(II)4?(Scys)11 where M = zinc(II), cadmium(II), and mercury(II), was assembled and minimized. The resultant three-dimensional structure closely resembled that of rat liver Cd5Zn2?MT 1 obtained by analysis of x-ray diffraction data [A. H. Robbins, D. E. McRee, M. Williamson, S. A. Collett, N. H. Xuong, W. F. Furey, B. C. Wang and C. D. Stout, J. Mol. Biol. 221, 1269–1293 (1991)]. Minimized structures for Zn7?MT, Cd7?MT, and Hg7?MT are reported. Deep crevices that expose the metal-thiolate clusters are seen in each structure. However, for the mercury-containing protein, much of the mercury-thiolate structure is visible and it is proposed that this provides access for extensive interaction between solvent water molecules and the mercury(II), resulting in the observed distortion away from tetrahedral geometry for Hg7MT. Volume calculations are reported for the protein metallated with 7 Zn(II), Cd(II), or Hg(II). A series of structural changes calculated for the step-wise isomorphous replacement of Zn(II) by Cd(II) and Hg(II) in the Zn4S11 α domain are shown.  相似文献   

9.
The reaction between [PtCl(dmso)(en)]Cl (dmso=dimethyl sulfoxide, en=ethylenediamine) and N-(3-pyridyl)-2-(4-(trifluoromethyl)phenyl)diazenecarboxamide (L) was studied using multinuclear NMR spectroscopy. The water-soluble complexes [PtCl(en)(L-N1)](+) (1) and [Pt(en)(L-N1)(2)](2+) (2) were isolated and their reactions with glutathione (GSH) were investigated to assess the oxidation properties of coordinated L. Both species 1 and 2 oxidized GSH to GSSG, while the reduced form of L (semicarbazide, SL) remained coordinated to Pt(2+). In complex 1 the labile chloride ion was substituted by the thiol moiety of GSH, which gave rise to the release of en in excess GSH over a period of 7 days. Complexes [PtCl(dmso)(en)]Cl, 1, 2 and ligand L were tested against T24 bladder carcinoma cells. Ligand L and complexes 1 and 2 showed higher cytotoxicity than [PtCl(dmso)(en)]Cl.  相似文献   

10.
(E)-2-(2-(2-hydroxyphenyl)hydrazono)-1-phenylbutane-1,3-dione (H2L) was synthesized by azocoupling of diazonium salt of 2-hydroxyaniline with 1-phenylbutane-1,3-dione and characterized by IR, 1H and 13C NMR spectroscopies and X-ray diffraction analysis. In solution, H2L exists as a mixture of the enol-azo and hydrazone tautomeric forms and a decrease of temperature and of solvent polarity shifts the tautomeric balance to the hydrazone form. In the solid state, H2L crystallizes from ethanol-water in the monohydrate hydrazone form, as shown by X-ray analysis. The dissociation constants of H2L (pK1 = 5.98 ± 0.04, pK2 = 9.72 ± 0.03) and the stability constants of its copper(II) complex (log β1 = 11.01 ± 0.07, log β2 = 20.19 ± 0.08) were determined by the potentiometric method in aqueous-ethanol solution. The copper(II) complex [Cu2(μ-L)2]n was isolated in the solid state and found by X-rays to be a coordination polymer of a binuclear core with a distorted square pyramidal metal coordination geometry.  相似文献   

11.
12.
The chemical nucleases 1,10-phenanthroline-Cu(II) and EDTA-Fe(II), have proven to be valuable tools for structural analysis of nucleic acids. Both have found applications in footprinting and directed proximity studies of DNA and RNA. Derivatives of each that provide for tethering to nucleic acid or protein are commercially available, allowing their widespread use for structural analysis of macromolecules. Although their applications are somewhat overlapping, differences in their cleavage mechanisms and chemical properties allow them to provide distinct and complementary structural information. The purpose of this study is to compare directly the cleavage patterns of tethered 1,10-phenanthroline-Cu(II) and EDTA-Fe(II) complexes within a similar experimental system. Here, the region surrounding nucleotide 1400 of 16S rRNA from Escherichia coli serves as a substrate for chemical cleavage directed by a derivatized complementary oligonucleotide. This region of rRNA is known to be involved in the decoding of mRNA during translation. The results of this study provide evidence in support of the mechanistic differences previously established for EDTA-Fe(II) and 1,10-phenathroline-Cu(II). The delocalized cleavage envelope produced by EDTA-Fe(II) cleavage suggests the involvement of a diffusible reactive species. On the other hand, rRNA cleavage induced by the tethered 1,10-phenanthroline-Cu(II) complex appears localized to the proximity of the chemical nuclease under normal conditions, although the production of an unknown diffusible species appears to occur during long reaction times.  相似文献   

13.
The complexes of 4-Acetyl-2-(acetylamino)-5- dimethyl-δ2-1,3,4-thiadiazole (AAT) with Mn(II), Fe(II), Co(Il) and Ni(II) have been prepared and characterized on the basis of elemental analyses, molar conductance, magnetic moments, electronic and infrared spectral studies. The most probable structures of the complexes have been proposed on the basis of their physicochemical properties. The fungitoxicity of AAT and its complexes has been evaluated on pathogenic fungi.  相似文献   

14.
Stoichiometry, kinetics, and optical properties of rabbit muscle pyruvate kinase activated with Co(II), Ni(II), Mg(II), and Mn(II) were studied. The stoichiometry of metal binding to enzyme was found to be 4 metal ions per tetrameric enzyme for Co(II) and Ni(II) by carrying out circular dichroic titrations. Cu(II) and Fe(II) were inactive. Ca(II) and Zn(II) were not activating, and were inhibitory with respect to all of the active cations. The temperature dependence of the optimal velocity is similar for all activating metals. The pH rate profiles suggest that there are two classes of enzyme activation by metal ions. Mg(II) and Mn(II) are quite similar to each other while Co(II) and Ni(II) are different from them but similar to each other. Absorption, natural, and magnetic CD in the visible region were used to probe the environment of the activating divalent cation in Ni(II)- and Co(II)-activated pyruvate kinase and their complexes with substrates and inhibitors...  相似文献   

15.
The hydration of nitriles to the corresponding amides is an important reaction for both laboratory and industry purposes. The classical synthesis method requires harsh conditions, gives low yields, and is nonselective due to further hydrolysis of the amides into carboxylic acids. To obtain good yields and high selectivity, transition metal complexes have been utilized as catalysts for this transformation. Herein, a series of Ru(II)- and Os(II)-arene complexes--based on pyranone, thiopyranone, and pyridinone ligands--were assayed on the hydration of chloroacetonitriles. The influence of the substitution pattern of the ligand, and of the nuclearity and of the type of substrate on the yield, the selectivity, and the turnover numbers are discussed.  相似文献   

16.
A new NNS tridentate ligand, S-allyl-3-(2-pyridyl-methylene)dithiocarbazate (HL) has been prepared. Three coordination complexes, Mn(L)2 (1), [Co(L)2]NO3 (2) and Ni(L)2 (3) (L is the deprotonated monoanionic form of HL) have been synthesized and characterized by elemental analysis, molar conductivity, FT-IR, 1H NMR and UV-Vis spectroscopy. 1 and 3 are neutral complexes, while 2 is cationic with nitrate as the counter ion. Single crystal X-ray diffraction analysis shows that bis-chelate complexes have a distorted octahedral geometry in which two ligands in thiolate tautomeric form coordinate to the metal center through N atoms of the pyridine and imino moieties and one S atom. Molecular geometry from X-ray analysis, molecular geometry optimization, atomic charges distribution and bond analysis of the ligand and complexes have been performed using the density functional theory (DFT) with the B3LYP functional.  相似文献   

17.
Tetrahymena pyriformis MT1 (TpyMT1) is a model among ciliate metallothioneins (MTs). Here, we report on the analytic (ICP-AES, GC-FPD), spectroscopic (CD, UV-Vis, Raman) and spectrometric (ESI-MS) characterization of its recombinant Cd(II)-, Zn(II)- and Cu(I)-complexes, and of those formed during in vitro Zn/Cd and Zn/Cu replacement. In the presence of Cd(II), TpyMT1 renders a major Cd 11-TpyMT1 species, which is also the final step reached in the in vitro Zn/Cd exchange process in Zn 11-TpyMT1. Spectroscopic data supports a different folding of the isostoichiometric Cd 11- and Zn 11-TpyMT1 complexes. Unexpectedly, TpyMT1 biosynthesis in Zn(II)-rich cultures was sensitive to the aeration degree, so that high oxygenation rendered undermetalated, partially-oxidized, complexes (Zn9-TpyMT1). Biosynthesis in Cu(I)-rich media rendered extremely heterogeneous mixtures of CuxZny-species (x+y=8-20), where the higher the aeration, the higher the Zn(II) content. The complexity of these samples was reproduced during the Zn/Cu replacement, as the number of generated species increased gradually with the addition of copper to Zn(11)-TpyMT1. According to our results, a clear preference of TpyMT1 for Cd(II) binding, rather than for Zn(II), and especially Cu(I) can be postulated. This character is totally consistent with the induction pattern of the TpyMT1 gene and the postulated role of TpyMT1 in Cd-detoxification.  相似文献   

18.
New fluorous-organometallics based on the chiral ligand α-methyl-N,N-dimethylbenzylamine (TMBA) were prepared by treatment of fluorous silyl bromide reagents with in situ 4-lithiated TMBA to give fluorous N,N-dimethyl(α-methyl-4-trialkylsilylbenzyl)amine ligands 1a-1c that vary in the number of fluorous tails attached to the Si atom. Ligands 1a-1c were successfully cyclo-palladated by treatment with Pd(OAc)2/LiCl in methanol to furnish the corresponding chloride-bridged dimeric arylpalladium(II) complexes 2a-2c in good yields. The latter derivatives could be converted into monomeric Lewis-base adducts by complexation with pyridine (3a-3c), or triphenylphosphine (4a-4c). The crystal structure of triphenylphosphine complex 4a has been elucidated. To probe their fluorophilicity, the partition coefficient of each of the derivatives in the fluorous biphasic solvent (FBS) system perfluoromethylcyclohexane/n-octane has been determined.  相似文献   

19.
4-Acetyl-2-(acetylamino)-5-dimethyl-Δ2-1,3,4-thiadiazole (AAT) has been used to obtain the complexes of the general formula [M(AAT)X2]·H2O where M(II) = Zn, Hg, Cd and Cu, and X  Cl or 12 SO4. The complexes have been characterized on the basis of their elemental analysis, molar conductance, magnetic susceptibility and spectral data. Probable structures for the complexes have been proposed on the basis of their physico-chemical properties. The fungitoxicity of AAT and the isolated complexes has been tested on pathogenic fungi.  相似文献   

20.
Differential scanning calorimetry (DSC) measurements have been carried out simultaneously with small- and wide-angle X-ray scattering recordings on liposomal dispersions of stearoyl-oleoyl-phosphatidylethanolamine (PE) in a temperature range from 20 to 80 degrees C. The main transition temperature, T(m), was determined at 30.9 degrees C with an enthalpy of 28.5 kJ/mol and the lamellar-to-inverse hexagonal phase transition temperature, T(hex), at 61.6 degrees C with an enthalpy of 3.8 kJ/mol. Additionally highly resolved small angle X-ray diffraction experiments performed at equilibrium conditions allowed a reliable decomposition of the lattice spacings into hydrophobic and hydrophilic structure elements as well as the determination of the lipid interface area of the lamellar gel-phase (L(beta)), the fluid lamellar phase (L(alpha)) and of the inverse hexagonal phase (H(II)). The rearrangement of the lipid matrix and the coincident change of free water per lipid is illustrated for both transitions. Last, possible transition mechanisms are discussed on a molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号