首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dalbergia nigra (rosewood) is a long-lived leguminous species, which is endemic to the Brazilian Atlantic forest. Because of the high economic value of its wood, this species has been over-explored in recent years. Currently, rosewood is included in the IUCN Red List as vulnerable. We examined the genetic diversity of 87 specimens of D. nigra sampled from a continuous forest in the Veracel Reserve and Brazilwood Ecological Station, Porto Seguro, Bahia state, with random amplified polymorphic DNA markers. Grouping analyses were done using unweighted pair group method with arithmetic averages. Using the 16 most informative primers, 112 markers were obtained; 39% (44 bands) were polymorphic. A genetic similarity matrix was made based on the polymorphic bands. The dispersion graph and dendrogram analyses showed three distinct sub-populations. The degree of polymorphism was high, near that of other populations of similar species; however, it was considered low for the conservation of this species.  相似文献   

2.
Fragmentation represents a serious threat to biodiversity worldwide, however its effects on epiphytic organisms is still poorly understood. We study the effect of habitat fragmentation on the genetic population structure and diversity of the red-listed epiphytic lichen, Lobaria pulmonaria, in a Mediterranean forest landscape. We tested the relative importance of forest patch quality, matrix surrounding fragments and connectivity on the genetic variation within populations and the differentiation among them. A total of 855 thalli were sampled in 44 plots (400 m2) of 31 suitable forest fragments (beeches and oaks), in the Sierra de Ayllón in central Spain. Variables related to landscape attributes of the remnant forest patches such as size and connectivity and also the nature of the matrix or tree species had no significant effects on the genetic diversity of L. pulmonaria. Values of genetic diversity (Nei’s) were only affected by habitat quality estimated as the age patches. Most of the variation (76%) in all populations was observed at the smallest sampled unit (plots). Using multiple regression analysis, we found that habitat quality is more important in explaining the genetic structure of the L. pulmonaria populations than spatial distance. The relatively high level of genetic diversity of the species in old forest patches regardless of patch size indicates that habitat quality in a highly structured forest stand determines the population size and distribution pattern of this species and its associated lichen community. Thus, conservation programmes of Mediterranean mountain forests have to prioritize area and habitat quality of old forest patches.  相似文献   

3.
Urban forests are generally fragmented in small isolated remnants, embedded in an inhospitable human-used matrix, and incur strong anthropogenic pressures (recreational activities, artificialization, pollution and eutrophication). These lead to particularly high constraints even for common forest herbs, whose genetic response may depend on life-history traits and population demographic status. This study investigated genetic variation and structure for 20 allozyme loci in 14 populations of Primula elatior, a self-incompatible long-lived perennial herb, occurring in forest fragments of Brussels urban zone (Belgium), in relation to population size and young plants recruitment rate. Urban populations of P. elatior were not genetically depauperate, but the small populations showed reduced allelic richness. Small populations showing high recruitment rates—and therefore potential rejuvenation—revealed lower genetic diversity (H o and H e) than those with low or no recruitment. No such pattern was observed for the large populations. There was a significant genetic differentiation among populations within forest fragments (F SC = 0.052, P < 0.001), but not between fragments (F CT = 0.002, P > 0.10). These findings suggest restricted gene flow among populations within fragments and local processes (genetic drift, inbreeding) affecting small populations, strengthened when there is recruitment. Urban forest populations of long-lived perennial herbs can be of conservation value. However, restoration of small populations by increasing population size through regeneration by seedling recruitment may lead to negative genetic consequences. Additional management, aiming to restore gene flow among populations, may need to be applied to compensate the loss of genetic diversity and to reduce inbreeding.  相似文献   

4.
The level and distribution of genetic diversity can be influenced by species life history traits and demographic factors, including perturbations that might produce population bottlenecks. Deforestation and forest fragmentation are common sources of population disturbance in contemporary populations of forest ecosystems. Although the genetic effects of forest fragmentation and deforestation have been examined by assessing levels of genetic variation in forest fragments that remain after logging, few considerations have been made of the populations that re-colonize once-cleared areas. Here we examine the effects of human-mediated population bottlenecks on the level and distribution of genetic diversity in natural populations of the long-lived forest tree species, Acer saccharum (sugar maple). We compared genetic variation and structure for populations of sugar maple found within old-growth forested area and in area that has re-colonized since logging. In this study the percent polymorphic loci and allelic richness estimates were reduced in the logged populations compared to old-growth populations. Jackknifed estimates of population genetic differentiation showed significantly higher differentiation among logged populations, with this result being consistently seen when individuals within populations were grouped according to diameter at breast height. The result of decreased genetic variation and higher levels of genetic structure among logged populations suggests that even one extensive bout of logging can alter the level and distribution of genetic variation in this forest tree species.  相似文献   

5.
Tropical late‐successional tree species are at high risk of local extinction due to habitat loss and fragmentation. Population‐growth rates in fragmented populations are predicted to decline as a result of reduced fecundity, survival and growth. We examined the demographic effects of habitat fragmentation by comparing the population dynamics of the late‐successional tree Poulsenia armata (Moraceae) in southern Mexico between a continuous forest and several forest fragments using integral projection models (IPMs) during 2010–2012. Forest fragmentation did not lead to differences in population density and even resulted in a higher population‐growth rate (λ) in fragments compared to continuous forests. Habitat fragmentation had drastic effects on the dynamics of P. armata, causing the population structure to shift toward smaller sizes. Fragmented populations experienced a significant decrease in juvenile survival and growth compared to unaltered populations. Adult survival and growth made the greatest relative contributions to λ in both habitat types during 2011–2012. However, the relative importance of juvenile survival and growth to λ was highest in the fragmented forest in 2010–2011. Our Life Table Response Experiment analysis revealed that positive contributions of adult fecundity explained most of the variation of λ between both habitats and annual periods. Finally, P. armata has a relatively slow speed of recovery after disturbances, compromising persistence of fragmented populations. Developing a mechanistic understanding of how forest fragmentation affects plant population dynamics, as done here, will prove essential for the preservation of natural areas.  相似文献   

6.
Scattered patches of Polylepis forest that occur within the 3,000–4,500 m altitudinal belt of the Andean Cordillera from Venezuela to Argentina have been hypothesized to be remnants of once continuous forests whose range became fragmented through anthropogenic activities that probably preceded the Spanish conquest. Allozyme variation of Polylepis pauta from 12 forest populations in three adjacent watersheds in Northeastern Ecuador was investigated to assess whether observed patterns of gene diversity were consistent with a more continuous historical range of the species and to evaluate the populations’ potential for restoration. Genetic diversity and polymorphism in P. pauta populations were higher than mean values for most wind pollinated and dispersed temperate and tropical tree species with regional distributions. Genetic differentiation among watersheds was lower than among populations within each watershed. Isolation by distance was not evident and several populations from different watersheds were more genetically similar than populations from the same watershed. Larger forest patches with broader altitudinal ranges had more alleles. Forest patches on steeper slopes and at higher elevations supported populations with less genetic diversity; this might have resulted from the predominance of vegetative reproduction in these landslide prone areas. The amount of genetic diversity maintained by P. pauta, coupled with low genetic differentiation among populations within and among watersheds, is consistent with a more continuous historical range of the species in Northeastern Ecuador and point to the Oyacachi basin as having the highest levels of genetic diversity.  相似文献   

7.
Understanding the pattern of abundance of vector populations is important to control the potential of transmission of associated pathogens. The pattern of abundance of Stomoxys Geoffroy, an ubiquitous blood‐sucking fly, is poorly known in tropical Africa. In this study, we investigated the spatio‐temporal pattern of abundance of the Stomoxys genus along a gradient of man‐made disturbance in north‐eastern Gabon. Three sites (one in primary forest, one in secondary forest and one in a man‐made environment) were monitored during 13 months using Vavoua traps. Seven species and subspecies were found to live in sympatry, but with distinct patterns of abundance with respect to space and time. The most abundant species was Stomoxys transvittatus Villeneuve, whereas the rarest species was S. xanthomelas Roubaud. Stomoxys calcitrans Linné was preferentially found in man‐made environments, whereas S. xanthomelas was preferentially found in primary forest. Stomoxys abundance was the greatest in secondary forest, then in man‐made environments and finally in primary forest. A seasonal variation in Stomoxys abundance was also found. In conclusion, forest degradation and deforestation are likely both to favour the concentration of populations of Stomoxys, and to change the specific composition of the Stomoxys community.  相似文献   

8.
In the South American temperate evergreen rainforest (Valdivian forest), invasive plants are mainly restricted to open sites, being rare in the shaded understory. This is consistent with the notion of closed-canopy forests as communities relatively resistant to plant invasions. However, alien plants able to develop shade tolerance could be a threat to this unique forest. Phenotypic plasticity and local adaptation are two mechanisms enhancing invasiveness. Phenotypic plasticity can promote local adaptation by facilitating the establishment and persistence of invasive species in novel environments. We investigated the role of these processes in the recent colonization of Valdivian forest understory by the perennial alien herb Prunella vulgaris from nearby populations in open sites. Using reciprocal transplants, we found local adaptation between populations. Field data showed that the shade environment selected for taller plants and greater specific leaf areas. We found population differentiation and within-population genetic variation in both mean values and reaction norms to light variation of several ecophysiological traits in common gardens from seeds collected in sun and shade populations. The colonization of the forest resulted in a reduction of plastic responses to light variation, which is consistent with the occurrence of genetic assimilation and suggests that P. vulgaris individuals adapted to the shade have reduced probabilities to return to open sites. All results taken together confirm the potential for rapid evolution of shade tolerance in P. vulgaris and suggest that this alien species may pose a threat to the native understory flora of Valdivian forest.  相似文献   

9.
The current range of the red ruffed lemur (Varecia rubra) population is primarily restricted to forests of the Masoala Peninsula on the northeastern coast of Madagascar. Whereas much of the peninsula is protected as Masoala National Park, parts of the forest are at risk from anthropogenic pressures and habitat fragmentation. We sampled 32 individual red ruffed lemur from two sites: Ambatoledama (DAMA), a narrow forest corridor across an area of degraded habitat connecting larger blocks of forest in the northwestern reaches of the park, and Masiaposa (MAS) forest, a largely pristine forest on the lower western side of the peninsula. Population genetic parameters were estimated for these two populations employing 15 microsatellite loci derived from the V. variegata genome. We found that by exceeding the expected heterozygosity at mutation-drift equilibrium, the DAMA population has undergone a recent population bottleneck. Population structure analysis detected individuals harboring genotypic admixture of the DAMA genetic cluster in the MAS population, suggesting a possibility of unilateral gene flow or movement between these populations.  相似文献   

10.
In order to conserve forest plant species under the particularly high constraints that represent urban surroundings, it is necessary to identify the key factors for population persistence. This study examined within‐ and between‐population pollen dispersal using fluorescent dye as pollen analogue, and genetic variation and structure using 15 allozyme loci in Centaurium erythraea, an insect‐pollinated, early‐successional forest biennial herb occurring in a peri‐urban forest (Brussels urban zone, Belgium). Dye dispersal showed an exponential decay distribution, with most dye transfers occurring at short distances (<15 m), and only a few long‐distance events (up to 743 m). Flowers of C. erythraea are mainly visited by Syrphids (Diptera) and small bees, which are usually considered as short‐distance pollen dispersers, and occasionally by bumblebees, which are usually longer‐distance pollen dispersers. Small and large dye source populations differed in dye deposition patterns. The populations showed low genetic diversity, high inbreeding coefficients (FIS) and high genetic differentiation (FST), suggesting restricted gene flow, which can be expected for an early‐successional biennial species with a predominantly selfing breeding system and fluctuating population sizes. The positive relationship between recruitment rate and allelic richness and expected heterozygosity, and the absence of significant correlations between genetic variation and population size suggest seedling recruitment from the seed bank, contributing to maintain genetic diversity. Long‐distance dye dispersal events indicate pollinator movements along urban forest path and road verges. These landscape elements might therefore have a potential conservation value by contributing to connectivity of early‐successional species populations located in patchy open habitats.  相似文献   

11.
Maianthemum bifolium Schmidt (May Lily) is a woodland species with low colonisation ability and high demands for seedling establishment conditions. To study the colonisation process, we analysed the clonal organisation and population structure of Maianthemum bifolium populations in a number of forest fragments using AFLP. A total of 129 genets were identified. Most (41/53) patches of M. bifolium in recent (less than 80 years old) and old (at least 175 years of age) parts of the woodlands contained single genets. Only one of the 12 patches with multiple genotypes showed intermingled growth. Besides seed dispersal also dispersal of vegetative material contributed to colonisation since five genotypes were found in more than one patch, with patches up to 51 m apart. Population differentiation between populations in different forests was significant (FST = 0.10) and indicated low gene flow. This level of differentiation was already found between populations in different parts of the same forest, just over 200 m apart. In fact, only two adjacent populations were not significantly differentiated, one population located in old forest whereas the other was established next to it on a former pasture re-forested after 1916. Limited gene flow is also consistent with the decrease of genetic similarities with physical distance, which relationship is highly significant but only for distances up to 400 m.  相似文献   

12.
We explored the effects of recent forest fragmentation on fine-scale patterns of population structuring and genetic diversity in populations of White-ruffed Manakins (Corapipo altera) inhabiting premontane forest fragments of varying size in southwestern Costa Rica. Habitat fragmentation is a major conservation concern for avian populations worldwide, but studies of the genetic effects of fragmentation on Neotropical birds are limited. We sampled 159 manakins from nine forest fragments of varying size within an 18 km radius, and genotyped these birds at 13 microsatellite loci. Bayesian clustering methods revealed that birds from all fragments comprised a single genetic population, and an MCMC approach showed that the fragments were likely to be at migration-drift equilibrium. F-statistics showed only modest levels of differentiation between forest fragments. We calculated allelic diversity indices for each fragment but found no correlation between genetic diversity and fragment size. These results suggest that manakins may retain substantial connectivity via inter-fragment dispersal despite habitat fragmentation.  相似文献   

13.
The impact of demographic parameters on the genetic population structure and viability of organisms is a long‐standing issue in the study of fragmented populations. Demographic and genetic tools are now readily available to estimate census and effective population sizes and migration and gene flow rates with increasing precision. Here we analysed the demography and genetic population structure over a recent 15‐year time span in five remnant populations of Cabanis's greenbul (Phyllastrephus cabanisi), a cooperative breeding bird in a severely fragmented cloud forest habitat. Contrary to our expectation, genetic admixture and effective population sizes slightly increased, rather than decreased between our two sampling periods. In spite of small effective population sizes in tiny forest remnants, none of the populations showed evidence of a recent population bottleneck. Approximate Bayesian modelling, however, suggested that differentiation of the populations coincided at least partially with an episode of habitat fragmentation. The ratio of meta‐Ne to meta‐Nc was relatively low for birds, which is expected for cooperative breeding species, while Ne/Nc ratios strongly varied among local populations. While the overall trend of increasing population sizes and genetic admixture may suggest that Cabanis's greenbuls increasingly cope with fragmentation, the time period over which these trends were documented is rather short relative to the average longevity of tropical species. Furthermore, the critically low Nc in the small forest remnants keep the species prone to demographic and environmental stochasticity, and it remains open if, and to what extent, its cooperative breeding behaviour helps to buffer such effects.  相似文献   

14.
Reduced connectivity among local populations inhabiting a spatially heterogeneous landscape may restrict gene flow and thus contribute to diminished genetic variation within a population. The aim of this study was to determine the role of geographic distance and habitat barriers in developing genetic structure of a yellow-necked mouse Apodemus flavicollis (Melchior, 1834) population, taking into consideration the spatial organization of the landscape. A field study was carried out in two plots located in NE Poland that differed considerably in terms of the scale of habitat fragmentation: (1) a continuous forest complex, and (2) a mosaic of smaller forest habitats. The plots were separated by a water barrier comprised of a chain of lakes. DNA samples from a total of 654 individuals were examined by microsatellite analysis (5 loci). The results showed that the yellow-necked mouse population was characterized by a poorly pronounced genetic structure throughout the study area, although the statistical significance of F ST for most location pairs indicated that gene flow in the area was not free. The division of the mouse population into three genetically distinct groups clearly demonstrated the significant role of water bodies as a natural barrier effectively hindering free movement of animals and thus gene flow. Analysis of the genetic structure of the mouse population throughout the study area and also within the distinguished groups indicated that the entire study population may be considered as a single metapopulation. Our results suggest that geographic distance alone is not the predominant factor affecting the genetic structure of population, but in the mosaic landscape the relative isolation of individual forest fragments, and barriers hindering movements of individuals and limiting gene flow among local populations played a much more important role.  相似文献   

15.
In agricultural landscapes, linear habitats, such as hedgerows at field margins increase structural connectivity among forest patches, potentially providing dispersal corridors for forest herbs. The spatial structure of linear habitats, however, also results in edge effects and perturbations that can influence the individual and population performance of forest plants. This study compares the stage structure and components of growth and reproduction of 14 Trillium grandiflorum populations in hedgerows and forests. Hedgerow Trillium tended to grow faster and, when mature, produced more flowers and more ovules per flowers than forest Trillium, a pattern possibly associated to differences in nutrients and light availability between the two habitats. Seed production and germination rate, however, did not differ between hedgerows and forests. At the population level, seedlings and juveniles were proportionally less abundant in hedgerows than in forests. Although well-established plants can thrive in hedgerows, reduced recruitment may eventually limit the capacity to establish new populations and therefore hamper migration along hedgerow-corridors. Considering the strategies by which plants persist in linear habitats becomes particularly relevant at a time when species are expected to be much in need of dispersal corridors because of climatic stress.  相似文献   

16.
Climatic seasonality, local habitat quality, and edge effects created by forest fragmentation due to human activity may affect the performance of endangered rain forest understory herbs. Viability and seasonal dynamics of the populations of the endangered Saintpaulia confusa, S. difficilis, and S. grotei were studied in a protected seasonal submontane forest in NE Tanzania by examining plant life-history traits, population stage structure, and the effects of habitat quality on plant performance. The population stage structures were of the dynamic type. There was a lower frequency of seedlings (57.9%) and higher frequency of juvenile (13.3%) and adult plants (28.8%) in S. confusa than in S. difficilis (74%, 10.7% and 15.3%, respectively). Seedling recruitment occurred from May to August with an average of 54, 103 and 38 emerged seedlings per 1 m2 study plot (S. confusa, S. difficilis, and S. grotei, respectively). Presence of the seed bank was also an indication of the regeneration potential of the populations. Mortality was high during the dry and hot season from December to March. Survival was lowest in juvenile plants, higher in sterile adult plants and the highest in fertile adult plants. Because survival was the lowest on dry substrates under open canopy, our data suggest that forest fragmentation, by reducing shade and humidity, will increase mortality in Saintpaulia. Furthermore, since the mortality was highest in seedlings and juveniles, forest fragmentation is likely to impede the regeneration of the Saintpaulia populations.  相似文献   

17.
The 2 howler species that occur in southern Mexico, Alouatta palliata mexicana and Alouatta pigra are endangered, mainly as a result of habitat loss and fragmentation from human activity. Little is known about the gastrointestinal parasite communities affecting their populations, and lack of baseline information for populations of howler species in continuous forest habitats, makes evaluations of gastrointestinal parasite prevalence in populations in fragmented landscapes difficult. We report the results of a one-time broad survey of gastrointestinal parasites in fecal samples of individuals from several demographically stable populations of Alouatta palliata mexicana and A. pigra existing in continuous and/or protected forests. We further report similar data for populations of both species in human-fragmented landscapes. We detected 6 parasites for each howler monkey species, but only 3 of them (Trematode I, Controrchis biliophilus, Trypanoxyuris sp.) were common to both species. While parasitic prevalence in populations of both howler species was, in general, higher in the fragmented habitat than in continuous and/or protected forests. The difference is only marginally significant in Alouatta pigra. Some parasites (Coccidia and Strongylid) only appeared in populations in fragmented landscapes. Preliminary data suggest that adult males tended to have higher parasite prevalence values than those of adult females in both howler species. Parasite prevalence is associated to average group size, but not to population density in Alouatta pigra.  相似文献   

18.
Fungal pathogens can regulate the abundance and distribution of natural plant populations by inhibiting the growth, survival, and reproduction of their hosts. The abiotic environment is a crucial component in host–pathogen interactions in natural plant populations as favorable conditions drive pathogen development, reproduction, and persistence. Foliar plant pathogens, such as fungal lesions referred to generically as “leaf spot disease,” are particularly responsive to increased moisture levels, but the manner in which the abiotic environment drives disease dynamics, and how these diseases regulate natural plant populations, is not fully understood. We investigate (1) the impact of ambient soil moisture and diffuse light on the prevalence of a leaf spot pathogen (Phyllosticta sp.) in a natural population of Polygonatum biflorum, an understory herb native to deciduous forest understories in the eastern US, and (2) the effects of the fungal pathogen on the survival, growth, and abundance of the plants. We tracked six P. biflorum populations and disease incidence, as well as soil moisture and diffuse light, between 2003 and 2005 in the understory deciduous forest of the southern Appalachian Mountains, North Carolina, USA. Results show that both the occurrence of P. biflorum and the prevalence of P. biflorum leaf spot disease are highest where soil moisture is intermediate and diffuse light is lowest. Disease occurrence depends upon plant presence, but it also adversely impacts plant survival, abundance, and growth. These results suggest that leaf spot disease is likely to impact population dynamics, which in turn vary as a function of environmental drivers.  相似文献   

19.
Genetic variation was investigated using AFLP markers in 12 populations of Anthurium sinuatum and A. pentaphyllum var. pentaphyllum (Araceae) in north‐east Brazil, Amazonia and the Brazilian Atlantic forest. Two unique genetic patterns characterized the populations of A. sinuatum as a group, but no correlation between genetic and geographical interpopulation distance was found; the Amazonian population was not separated from that in Ceará. The isolated Ceará brejo populations of A. sinuatum were genetically distinct, but genetic diversity levels were similar to populations elsewhere, with no evidence of genetic erosion. Anthurium pentaphyllum populations were significantly different from each other; Bayesian genetic structural analysis found no common genetic pattern, but revealed genetic clusters unique to subgroups and individual populations in the Atlantic forest and French Guiana. Anthurium pentaphyllum and A. sinuatum can be distinguished genetically, but individuals of both species formed intermediate genetic clusters that blurred their distinction. We suggest that genetic mixing of A. sinuatum and A. pentaphyllum has occurred in north‐east Brazil, possibly connected with cycles of humid forest expansion. The weak genetic structure in A. sinuatum is consistent with the natural fragmentation of continuous forest areas, possibly during the Holocene. This study highlights the scientific importance of the highly threatened brejo forests for tropical American biogeography. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 88–105.  相似文献   

20.
Forest fragmentation is viewed as a serious threat to primates, yet whether or not it can disrupt food resources and cause energetic stress remains largely untested. I present the results of a 12-mo study of the feeding ecology of Propithecus diadema in fragmented and continuous forest at Tsinjoarivo, eastern Madagascar. Two continuous forest groups had higher dietary diversity and ate more fleshy fruit, but during the dry season, diversity was reduced and they relied heavily on mistletoe (Bakerella clavata). In contrast, 2 groups in fragments employed the lean season strategy of eating mistletoe year-round; the fruiting tree species that sustain continuous forest groups through the rainy season were largely absent. As expected, intersite dietary overlap was highest in the dry season. The level of specialization was high: fragment groups devoted 30–40% of feeding time to Bakerella clavata, compared to 28–30% in continuous forest. The major characteristic of Bakerella clavata enabling it to be an important fallback or staple resource, or both, is its extended phenology. The difference in resource utilization between sites may have important implications for nutritional status, as well as ranging and social behavior, largely owing to the small size and high abundance of feeding patches of Bakerella. Understanding resource shifts in fragments can shed light on socioecological questions by providing comparisons between continuous forest and fragment populations with differing diets and resource distributions. In addition, understanding dietary shifts in fragments can aid in species-specific conservation efforts, while contributing to a better understanding of the considerable interspecific variability of primates in responses to fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号