首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nup98 is a glycine-leucine-phenylalanine-glycine (GLFG) repeat–containing nucleoporin that, in addition to nuclear transport, contributes to multiple aspects of gene regulation. Previous studies revealed its dynamic localization within intranuclear structures known as GLFG bodies. Here we show that the mammalian Nup107-160 complex (Y-complex), a major scaffold module of the nuclear pore, together with its partner Elys, colocalizes with Nup98 in GLFG bodies. The frequency and size of GLFG bodies vary among HeLa sublines, and we find that an increased level of Nup98 is associated with the presence of bodies. Recruitment of the Y-complex and Elys into GLFG bodies requires the C-terminal domain of Nup98. During cell division, Y-Nup–containing GLFG bodies are disassembled in mitotic prophase, significantly ahead of nuclear pore disassembly. FRAP studies revealed that, unlike at nuclear pores, the Y-complex shuttles into and out of GLFG bodies. Finally, we show that within the nucleoplasm, a fraction of Nup107, a key component of the Y-complex, displays reduced mobility, suggesting interaction with other nuclear components. Together our data uncover a previously neglected intranuclear pool of the Y-complex that may underscore a yet-uncharacterized function of these nucleoporins inside the nucleus, even in cells that contain no detectable GLFG bodies.  相似文献   

2.
Nup53 is required for nuclear envelope and nuclear pore complex assembly   总被引:1,自引:0,他引:1  
Transport across the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs). These structures are composed of various subcomplexes of proteins that are each present in multiple copies and together establish the eightfold symmetry of the NPC. One evolutionarily conserved subcomplex of the NPC contains the nucleoporins Nup53 and Nup155. Using truncation analysis, we have defined regions of Nup53 that bind to neighboring nucleoporins as well as those domains that target Nup53 to the NPC in vivo. Using this information, we investigated the role of Nup53 in NE and NPC assembly using Xenopus egg extracts. We show that both events require Nup53. Importantly, the analysis of Nup53 fragments revealed that the assembly activity of Nup53 depleted extracts could be reconstituted using a region of Nup53 that binds specifically to its interacting partner Nup155. On the basis of these results, we propose that the formation of a Nup53-Nup155 complex plays a critical role in the processes of NPC and NE assembly.  相似文献   

3.
Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in the nuclear envelope (NE), through which exchange of molecules between the nucleus and cytosol occurs. Biogenesis of NPCs is complex and poorly understood. In particular, almost nothing is known about how NPCs are anchored in the NE. Here, we characterize vertebrate NDC1--a transmembrane nucleoporin conserved between yeast and metazoans. We show by RNA interference (RNAi) and biochemical depletion that NDC1 plays an important role in NPC and NE assembly in vivo and in vitro. RNAi experiments suggest a functional link between NDC1 and the soluble nucleoporins Nup93, Nup53, and Nup205. Importantly, NDC1 interacts with Nup53 in vitro. This suggests that NDC1 function involves forming a link between the NE membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane.  相似文献   

4.
Beside its central role in the mitochondria-dependent cell death pathway, the apoptotic protease activating factor 1 (Apaf-1) is involved in the DNA damage response through cell-cycle arrest induced by genotoxic stress. This non-apoptotic function requires a nuclear translocation of Apaf-1 during the G1-to-S transition. However, the mechanisms that trigger the nuclear accumulation of Apaf-1 upon DNA damage remain to be investigated. Here we show that the main 4 isoforms of Apaf-1 can undergo nuclear translocation and restore Apaf-1 deficient MEFs cell cycle arrest in the S phase following genotoxic stress through activation of Chk-1. Interestingly, DNA damage-dependent nuclear accumulation of Apaf-1 occurs independently of p53 and the retinoblastoma (pRb) pathway. We demonstrated that Apaf-1 associates with the nucleoporin Nup107 and this association is necessary for Apaf-1 nuclear import. The CED-4 domain of Apaf-1 directly binds to the central domain of Nup107 in an ATR-regulated, phosphorylation-dependent manner. Interestingly, expression of the Apaf-1-interacting domain of Nup107 interfered with Apaf-1 nuclear translocation upon genotoxic stress, resulting in a marked reduction of Chk-1 activation and cell cycle arrest. Thus, our results confirm the crucial role of Apaf-1 nuclear relocalization in mediating cell-cycle arrest induced by genotoxic stress and implicate Nup107 as a critical regulator of the DNA damage-induced intra-S phase checkpoint response.  相似文献   

5.
Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle.  相似文献   

6.
Blower MD  Nachury M  Heald R  Weis K 《Cell》2005,121(2):223-234
Centrosome-independent microtubule polymerization around chromosomes has been shown to require a local gradient of RanGTP, which discharges mitotic cargoes from the nuclear import receptor importin beta. Here, we have used an activity-based assay in Xenopus egg extracts to purify the mRNA export protein Rae1 as a spindle assembly factor regulated by this pathway. Rae1 is a microtubule-associated protein that binds directly to importin beta. Depletion of Rae1 from extracts or cells severely inhibits mitotic spindle assembly. A purified Rae1 complex stabilizes microtubules in egg extracts in a RanGTP/importin beta-regulated manner. Interestingly, Rae1 exists in a large ribonucleoprotein complex, which requires RNA for its activity to control microtubule dynamics in vitro. Furthermore, we provide evidence that RNA associates with the mitotic spindle and that it plays a direct, translation-independent role in spindle assembly. Our studies reveal an unexpected function for RNA in spindle morphogenesis.  相似文献   

7.
In eukaryotes, bidirectional transport of macromolecules between the cytoplasm and the nucleus occurs through elaborate supramolecular structures embedded in the nuclear envelope, the nuclear pore complexes (NPCs). NPCs are composed of multiple copies of approximately 30 different proteins termed nucleoporins, of which several can be biochemically isolated as subcomplexes. One such building block of the NPC, termed the Nup107-160 complex in vertebrates, was so far demonstrated to be composed of six different nucleoporins. Here, we identify three WD (Trp-Asp)-repeat nucleoporins as new members of this complex, two of which, Nup37 and Nup43, are specific to higher eukaryotes. The third new member Seh1 is more loosely associated with the Nup107-160 complex biochemically, but its depletion by RNA interference leads to phenotypes similar to knock down of other constituents of this complex. By combining green fluorescent protein-tagged nucleoporins and specific antibodies, we show that all the constituents of this complex, including Nup37, Nup43, Seh1, and Sec13, are targeted to kinetochores from prophase to anaphase of mitosis. Together, our results indicate that the entire Nup107-160 complex, which comprises nearly one-third of the so-far identified nucleoporins, specifically localizes to kinetochores in mitosis.  相似文献   

8.
The association of small, ubiquitin-related modifier-specific isopeptidases (also known as sentrin-specific proteases, or SENPs) with nuclear pore complexes (NPCs) is conserved in eukaryotic organisms ranging from yeast to mammals. However, the functional significance of this association remains poorly understood, particularly in mammalian cells. In this study, we have characterized the molecular basis for interactions between SENP2 and NPCs in human cells. Using fluorescence recovery after photobleaching, we demonstrate that SENP2, although concentrated at the nuclear basket, is dynamically associated with NPCs. This association is mediated by multiple targeting elements within the N-terminus of SENP2 that function cooperatively to mediate NPC localization. One of these elements consists of a high-affinity nuclear localization signal that mediates indirect tethering to FG-repeat-containing nucleoporins through karyopherins. A second element mediates interactions with the Nup107-160 nucleoporin subcomplex. A third element consists of a nuclear export signal. Collectively, our findings reveal that SENP2 is tethered to NPCs through a complex interplay of interactions with nuclear import and export receptors and nucleoporins. Disruption of these interactions enhances SENP2 substrate accessibility, suggesting an important regulatory node in the SUMO pathway.  相似文献   

9.
We previously demonstrated that a fraction of the human Nup107-160 nuclear pore subcomplex is recruited to kinetochores at the onset of mitosis. However, the molecular determinants for its kinetochore targeting and the functional significance of this localization were not investigated. Here, we show that the Nup107-160 complex interacts with CENP-F, but that CENP-F only moderately contributes to its targeting to kinetochores. In addition, we show that the recruitment of the Nup107-160 complex to kinetochores mainly depends on the Ndc80 complex. We further demonstrate that efficient depletion of the Nup107-160 complex from kinetochores, achieved either by combining siRNAs targeting several of its subunits excluding Seh1, or by depleting Seh1 alone, induces a mitotic delay. Further analysis of Seh1-depleted cells revealed impaired chromosome congression, reduced kinetochore tension and kinetochore-microtubule attachment defects. Finally, we show that the presence of the Nup107-160 complex at kinetochores is required for the recruitment of Crm1 and RanGAP1-RanBP2 to these structures. Together, our data thus provide the first molecular clues underlying the function of the human Nup107-160 complex at kinetochores.  相似文献   

10.
Deubiquitinating enzymes (DUBs) negatively regulate protein ubiquitination and play an important role in diverse physiological processes, including mitotic division. The BRCC36 isopeptidase complex (BRISC) is a DUB that is specific for lysine 63–linked ubiquitin hydrolysis; however, its biological function remains largely undefined. Here, we identify a critical role for BRISC in the control of mitotic spindle assembly in cultured mammalian cells. BRISC is a microtubule (MT)-associated protein complex that predominantly localizes to the minus ends of K-fibers and spindle poles and directly binds to MTs; importantly, BRISC promotes the assembly of functional bipolar spindle by deubiquitinating the essential spindle assembly factor nuclear mitotic apparatus (NuMA). The deubiquitination of NuMA regulates its interaction with dynein and importin-β, which are required for its function in spindle assembly. Collectively, these results uncover BRISC as an important regulator of the mitotic spindle assembly and cell division, and have important implications for the development of anticancer drugs targeting BRISC.  相似文献   

11.
The nuclear pore complex (NPC) is an evolutionarily conserved structure that mediates exchange of macromolecules across the nuclear envelope (NE). It is comprised of approximately 30 proteins termed nucleoporins that are each present in multiple copies. We have investigated the function of the human nucleoporin Nup53, the ortholog of Saccharomyces cerevisiae Nup53p. Both cell fractionation and in vitro binding data suggest that Nup53 is tightly associated with the NE membrane and the lamina where it interacts with lamin B. We have also shown that Nup53 is capable of physically interacting with a group of nucleoporins including Nup93, Nup155, and Nup205. Consistent with this observation, depletion of Nup53 using small interfering RNAs causes a decrease in the cellular levels of these nucleoporins as well as the spindle checkpoint protein Mad1, likely due to destabilization of Nup53-containing complexes. The cellular depletion of this group of nucleoporins, induced by depleting either Nup53 or Nup93, severely alters nuclear morphology producing phenotypes similar to that previously observed in cells depleted of lamin A and Mad1. On basis of these data, we propose a model in which Nup53 is positioned near the pore membrane and the lamina where it anchors an NPC subcomplex containing Nup93, Nup155, and Nup205.  相似文献   

12.
Lixin Zhou 《FEBS letters》2010,584(14):3013-3020
Nucleoporin 153 (Nup153), a component of the nuclear pore complex (NPC), has been implicated in the interaction of the NPC with the nuclear lamina. Here we show that depletion of Nup153 by RNAi results in alteration of the organization of the nuclear lamina and the nuclear lamin-binding protein Sun1. More striking, Nup153 depletion induces a dramatic cytoskeletal rearrangement that impairs cell migration in human breast carcinoma cells. Our results point to a very prominent role of Nup153 in connection to cell motility that could be exploited in order to develop novel anti-cancer therapy.

Structured summary

MINT-7893777: Lamin-A/C (uniprotkb:P02545) and NUP153 (uniprotkb:P49790) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7893761: sun1 (uniprotkb:Q9D666) and Lamin-A/C (uniprotkb:P02545) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

13.
Although the microtubule-depolymerizing KinI motor Kif2a is abundantly expressed in neuronal cells, we now show it localizes to centrosomes and spindle poles during mitosis in cultured cells. RNAi-induced knockdown of Kif2a expression inhibited cell cycle progression because cells assembled monopolar spindles. Bipolar spindle assembly was restored in cells lacking Kif2a by treatments that altered microtubule assembly (nocodazole), eliminated kinetochore-microtubule attachment (loss of Nuf2), or stabilized microtubule plus ends at kinetochores (loss of MCAK). Thus, two KinI motors, MCAK and Kif2a, play distinct roles in mitosis, and MCAK activity at kinetochores must be balanced by Kif2a activity at poles for spindle bipolarity. These treatments failed to restore bipolarity to cells lacking the activity of the kinesin Eg5. Thus, two independent pathways contribute to spindle bipolarity, with the Eg5-dependent pathway using motor force to drive spindle bipolarity and the Kif2a-dependent pathway relying on microtubule polymer dynamics to generate force for spindle bipolarity.  相似文献   

14.
Chromosome condensation is required for the physical resolution and segregation of sister chromatids during cell division, but the precise role of higher order chromatin structure in mitotic chromosome functions is unclear. Here, we address the role of the major condensation machinery, the condensin complex, in spindle assembly and function in Xenopus laevis egg extracts. Immunodepletion of condensin inhibited microtubule growth and organization around chromosomes, reducing the percentage of sperm nuclei capable of forming spindles, and causing dramatic defects in anaphase chromosome segregation. Although the motor CENP-E was recruited to kinetochores pulled poleward during anaphase, the disorganized chromosome mass was not resolved. Inhibition of condensin function during anaphase also inhibited chromosome segregation, indicating its continuous requirement. Spindle assembly around DNA-coated beads in the absence of kinetochores was also impaired upon condensin inhibition. These results support an important role for condensin in establishing chromosomal architecture necessary for proper spindle assembly and chromosome segregation.  相似文献   

15.
In vertebrate somatic cells the centrosome functions as the major microtubule-organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles - such as plant cells and many oocytes - bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them, and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization- both before and after nuclear envelope breakdown (NEB) - is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity.  相似文献   

16.
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope (NE) and mediate bidirectional nucleocytoplasmic transport. Their spatial distribution in the NE is organized by the nuclear lamina, a meshwork of nuclear intermediate filament proteins. Major constituents of the nuclear lamina are A- and B-type lamins. In this work we show that the nuclear pore protein Nup88 binds lamin A in vitro and in vivo. The interaction is mediated by the N-terminus of Nup88, and Nup88 specifically binds the tail domain of lamin A but not of lamins B1 and B2. Expression of green fluorescent protein-tagged lamin A in cells causes a masking of binding sites for Nup88 antibodies in immunofluorescence assays, supporting the interaction of lamin A with Nup88 in a cellular context. The epitope masking disappears in cells expressing mutants of lamin A that are associated with laminopathic diseases. Consistently, an interaction of Nup88 with these mutants is disrupted in vitro. Immunoelectron microscopy using Xenopus laevis oocyte nuclei further revealed that Nup88 localizes to the cytoplasmic and nuclear face of the NPC. Together our data suggest that a pool of Nup88 on the nuclear side of the NPC provides a novel, unexpected binding site for nuclear lamin A.  相似文献   

17.
BRCA1 as a tumor suppressor has been widely investigated in mitosis, but its functions in meiosis are unclear. In the present study, we examined the expression, localization, and function of BRCA1 during mouse oocyte meiotic maturation. We found that expression level of BRCA1 was increased progressively from germinal vesicle to metaphase I stage, and then remained stable until metaphase II stage. Immunofluorescent analysis showed that BRCA1 was localized to the spindle poles at metaphase I and metaphase II stages, colocalizing with centrosomal protein gamma-tubulin. Taxol treatment resulted in the presence of BRCA1 onto the spindle microtubule fibers, whereas nocodazole treatment induced the localization of BRCA1 onto the chromosomes. Depletion of BRCA1 by both antibody injection and siRNA injection caused severely impaired spindles and misaligned chromosomes. Furthermore, BRCA1-depleted oocytes could not arrest at the metaphase I in the presence of low-dose nocodazole, suggesting that the spindle checkpoint is defective. Also, in BRCA1-depleted oocytes, gamma-tubulin dissociated from spindle poles and MAD2L1 failed to rebind to the kinetochores when exposed to nocodazole at metaphase I stage. Collectively, these data indicate that BRCA1 regulates not only meiotic spindle assembly, but also spindle assembly checkpoint, implying a link between BRCA1 deficiency and aneuploid embryos.  相似文献   

18.
The nuclear pore complex (NPC) is a large proteinaceous structure through which bidirectional transport of macromolecules across the nuclear envelope (NE) takes place. Nup153 is a peripheral NPC component that has been implicated in protein and RNP transport and in the interaction of NPCs with the nuclear lamina. Here, Nup153 is localized by immunogold electron microscopy to a position on the nuclear ring of the NPC. Nuclear reconstitution is used to investigate the role of Nup153 in nucleo- cytoplasmic transport and NPC architecture. NPCs assembled in the absence of Nup153 lacked several nuclear basket components, were unevenly distributed in the NE and, unlike wild-type NPCs, were mobile within the NE. Importin alpha/beta-mediated protein import into the nucleus was strongly reduced in the absence of Nup153, while transportin-mediated import was unaffected. This was due to a reduction in import complex translocation rather than to defective receptor recycling. Our results therefore reveal functions for Nup153 in NPC assembly, in anchoring NPCs within the NE and in mediating specific nuclear import events.  相似文献   

19.
Nuclear envelope breakdown is a critical step in the cell cycle of higher eukaryotes. Although integral membrane proteins associated with the nuclear membrane have been observed to disperse into the endoplasmic reticulum at mitosis, the mechanisms involved in this reorganization remain to be fully elucidated. Here, using Xenopus extracts, we report a role for the COPI coatomer complex in nuclear envelope breakdown, implicating vesiculation as an important step. We have found that a nuclear pore protein, Nup153, plays a critical role in directing COPI to the nuclear membrane at mitosis and that this event provides feedback to other aspects of nuclear disassembly. These results provide insight into how key steps in nuclear division are orchestrated.  相似文献   

20.
The nuclear pore complex (NPC) conducts macromolecular transport to and from the nucleus and provides a kinetic/hydrophobic barrier composed of phenylalanine-glycine (FG) repeats. Nuclear transport is achieved through permeation of this barrier by transport receptors. The transport receptor CRM1 facilitates export of a large variety of cargoes. Export of the preribosomal 60 S subunit follows this pathway through the adaptor protein NMD3. Using RNA interference, we depleted two FG-containing cytoplasmically oriented NPC complexes, Nup214-Nup88 and Nup358, and investigated CRM1-mediated export. A dramatic defect in NMD3-mediated export of preribosomes was found in Nup214-Nup88-depleted cells, whereas only minor export defects were evident in other CRM1 cargoes or upon depletion of Nup358. We show that the large C-terminal FG domain of Nup214 is not accessible to freely diffusing molecules from the nucleus, indicating that it does not conduct 60 S preribosomes through the NPC. Consistently, derivatives of Nup214 lacking the FG-repeat domain rescued the 60 S export defect. We show that the coiled-coil region of Nup214 is sufficient for 60 S nuclear export, coinciding with recruitment of Nup88 to the NPC. Our data indicate that Nup214 plays independent roles in NPC function by participating in the kinetic/hydrophobic barrier through its FG-rich domain and by enabling NPC gating through association with Nup88.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号