首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly of bacteriophage P22 procapsids requires the participation of approximately 300 molecules of scaffolding protein in addition to the 420 coat protein subunits. In the absence of the scaffolding, the P22 coat protein can assemble both wild-type-size and smaller size closed capsids. Both sizes of procapsid assembled in the absence of the scaffolding protein have been studied by electron cryomicroscopy. These structural studies show that the larger capsids have T = 7 icosahedral lattices and appear the same as wild-type procapsids. The smaller capsids possess T = 4 icosahedral symmetry. The two procapsids consist of very similar penton and hexon clusters, except for an increased curvature present in the T = 4 hexon. In particular, the pronounced skewing of the hexons is conserved in both sizes of capsid. The T = 7 procapsid has a local non-icosahedral twofold axis in the center of the hexon and thus contains four unique quasi-equivalent coat protein conformations that are the same as those in the T = 4 procapsid. Models of how the scaffolding protein may direct these four coat subunit types into a T = 7 rather than a T = 4 procapsid are presented.  相似文献   

2.
Like other bacteriophages, T7 has a singular vertex that is the site of a symmetry mismatch involving the portal/connector protein, a 12-fold ring at the vertex site which is also a 5-fold axis for the icosahedral capsid. In the mature virion, a 6-fold-symmetric tail extends outwards from the connector. T7 also has a cylindrical "core" that assembles on the inner surface of the connector during procapsid formation, is retained in the mature virion, and is required for infectivity. We have investigated the core structure by cryo-electron microscopy and image analysis of procapsids and find that it observes 8-fold symmetry. Stoichiometry data indicate that its major constituent is an octamer of gp15.  相似文献   

3.
The complex double-stranded DNA bacteriophages assemble DNA-free protein shells (procapsids) that subsequently package DNA. In the case of several double-stranded DNA bacteriophages, including P22, packaging is associated with cutting of DNA from the concatemeric molecule that results from replication. The mature intravirion P22 DNA has both non-unique (circularly permuted) ends and a length that is determined by the procapsid. In all known cases, procapsids consist of an outer coat protein, an interior scaffolding protein that assists in the assembly of the coat protein shell, and a ring of 12 identical portal protein subunits through which the DNA is presumed to enter the procapsid. To investigate the role of the portal protein in cutting permuted DNA from concatemers, we have characterized P22 portal protein mutants. The effects of several single amino acid changes in the P22 portal protein on the length of the DNA packaged, the density to which DNA is condensed within the virion, and the outer radius of the capsid have been determined. The results obtained with one mutant (NT5/1a) indicate no change (+/- 0.5%) in the radius of the capsid, but mature DNA that is 4.7% longer and a packing density that is commensurately higher than those of wild-type P22. Thus, the portal protein is part of the gauge that regulates the length and packaging density of DNA in bacteriophage P22. We argue that these findings make models for DNA packaging less likely in which the packing density is a property solely of the coat protein shell or of the DNA itself.  相似文献   

4.
The process of phage capsid assembly is reviewed, with particular attention to the probable role of curvature in helping to determine head size and shape. Both measures of curvature (mean curvature and Gaussian curvature, explained in Appendix I), should act best when the assembling shell is spherical, which could account for procapsids having this shape. Procapsids are also relatively thick, which should help head size determination by the mean curvature. The accessory role of inner and outer scaffolds in size determination and head nucleation is also reviewed.Nucleation failure generates various malformations, including non-closure, but the most common is the tube or polyhead, where the subunits' inherent curvature is expressed as a constant mean curvature. This induces lattice distortions that only partly understood. An extra tubular section in normal heads leads to the prolate shape, with a more complex and variable geometry.Newly assembled procapsids are both enlarged and toughened by the head transformation. In the procapsid the Gaussian curvature is uniformly distributed. But toughening tends to equalize bond lengths, so all the Gaussian curvature gets concentrated in the vertices, being zero elsewhere. This explains head angularization. Because of this change in Gaussian curvature, the regular subunit packing in the polyhedral head cannot be mapped onto the procapsid. This explains part of the hexon distortions found in this region.The implications of translocase-induced DNA twist, end rotation and the coiling of packaged DNA, are discussed.The symmetry mismatches between the head, connector and tail are discussed in relation to the possible alpha-helical structures of their DNA channels.  相似文献   

5.
6.
In the morphogenesis of double stranded DNA phages, a precursor protein shell empty of DNA is first assembled and then filled with DNA. The assembly of the correctly dimensioned precursor shell (procapsid) of Salmonella bacteriophage P22 requires the interaction of some 420 coat protein subunits with approximately 200 scaffolding protein subunits to form a double shelled particle with the scaffolding protein on the inside. In the course of DNA packaging, all of the scaffolding protein subunits exit from the procapsid and participate in further rounds of procapsid assembly (King and Casjens. 1974. Nature (Lond.). 251:112-119). To study the mechanism of shell assembly we have purified the coat and scaffolding protein subunits by selective dissociation of isolated procapsids. Both proteins can be obtained as soluble subunits in Tris buffer at near neutral pH. The coat protein sedimented in sucrose gradients as a roughly spherical monomer, while the scaffolding protein sedimented as if it were an elongated monomer. When the two proteins were mixed together in 1.5 M guanidine hydrochloride and dialyzed back to buffer at room temperature, procapsids formed which were very similar in morphology, sedimentation behavior, and protein composition to procapsids formed in vivo. Incubation of either protein alone under the same conditions did not yield any large structures. We interpret these results to mean that the assembly of the shell involves a switching of both proteins from their nonaggregating to their aggregating forms through their mutual interaction. The results are discussed in terms of the general problem of self-regulated assembly and the control of protein polymerization in morphogenesis.  相似文献   

7.
In tailed icosahedral bacteriophages the connection between the 5-fold symmetric environment of the portal vertex in the capsid and the 6-fold symmetric phage tail is formed by a complex interface structure. The current study provides the detailed analysis of the assembly and structural organisation of such an interface within a phage having a long tail. The region of the interface assembled as part of the viral capsid (connector) was purified from DNA-filled capsids of the Bacillus subtilis bacteriophage SPP1. It is composed of oligomers of gp6, the SPP1 portal protein, of gp15, and of gp16. The SPP1 connector structure is formed by a mushroom-like portal protein whose cap faces the interior of the viral capsid in intact virions, an annular structure below the stem of the mushroom, and a second narrower annulus that is in direct contact with the helical tail extremity. The layered arrangement correlates to the stacking of gp6, gp15, and gp16 on top of the tail. The gp16 ring is exposed to the virion outside. During SPP1 morphogenesis, gp6 participates in the procapsid assembly reaction, an early step in the assembly pathway, while gp15 and gp16 bind to the capsid portal vertex after viral chromosome encapsidation. gp16 is processed during or after tail attachment to the connector region. The portal protein gp6 has 12-fold cyclical symmetry in the connector structure, whereas assembly-na?ve gp6 exhibits 13-fold symmetry. We propose that it is the interaction of gp6 with other viral morphogenetic proteins that drives its assembly into the 12-mer state.  相似文献   

8.
The herpes simplex virus 1 capsid is formed in the infected cell nucleus by way of a spherical, less robust intermediate called the procapsid. Procapsid assembly requires the capsid shell proteins (VP5, VP19C, and VP23) plus the scaffolding protein, pre-VP22a, a major component of the procapsid that is not present in the mature virion. Pre-VP22a is lost as DNA is packaged and the procapsid is transformed into the mature, icosahedral capsid. We have employed a cell-free assembly system to examine the role of the scaffolding protein in procapsid formation. While other reaction components (VP5, VP19C, and VP23) were held constant, the pre-VP22a concentration was varied, and the resulting procapsids were analyzed by electron microscopy and SDS-polyacrylamide gel electrophoresis. The results demonstrated that while standard-sized (T = 16) procapsids with a measured diameter of approximately 100 nm were formed above a threshold pre-VP22a concentration, at lower concentrations procapsids were smaller. The measured diameter was approximately 78 nm and the predicted triangulation number was 9. No procapsids larger than the standard size or smaller than 78-nm procapsids were observed in appreciable numbers at any pre-VP22a concentration tested. SDS-polyacrylamide gel analyses indicated that small procapsids contained a reduced amount of scaffolding protein compared to the standard 100-nm form. The observations indicate that the scaffolding protein concentration affects the structure of nascent procapsids with a minimum amount required for assembly of procapsids with the standard radius of curvature and scaffolding protein content.  相似文献   

9.
Assembly of certain classes of bacterial and animal viruses requires the transient presence of molecules known as scaffolding proteins, which are essential for the assembly of the precursor procapsid. To assemble a procapsid of the proper size, each viral coat subunit must adopt the correct quasiequivalent conformation from several possible choices, depending upon the T number of the capsid. In the absence of scaffolding protein, the viral coat proteins form aberrantly shaped and incorrectly sized capsids that cannot package DNA. Although scaffolding proteins do not form icosahedral cores within procapsids, an icosahedrally ordered coat/scaffolding interaction could explain how scaffolding can cause conformational differences between coat subunits. To identify the interaction sites of scaffolding protein with the bacteriophage P22 coat protein lattice, we have determined electron cryomicroscopy structures of scaffolding-containing and scaffolding-lacking procapsids. The resulting difference maps suggest specific interactions of scaffolding protein with only four of the seven quasiequivalent coat protein conformations in the T = 7 P22 procapsid lattice, supporting the idea that the conformational switching of a coat subunit is regulated by the type of interactions it undergoes with the scaffolding protein. Based on these results, we propose a model for P22 procapsid assembly that involves alternating steps in which first coat, then scaffolding subunits form self-interactions that promote the addition of the other protein. Together, the coat and scaffolding provide overlapping sets of binding interactions that drive the formation of the procapsid.  相似文献   

10.
The procapsid of the Bacillus subtilis bacteriophage SPP1 is formed by the major capsid protein gp13, the scaffolding protein gp11, the portal protein gp6, and the accessory protein gp7. The protein stoichiometry suggests a T=7 symmetry for the SPP1 procapsid. Overexpression of SPP1 procapsid proteins in Escherichia coli leads to formation of biologically active procapsids, procapsid-like, and aberrant structures. Co-production of gp11, gp13 and gp6 is essential for assembly of procapsids competent for DNA packaging in vitro. Presence of gp7 in the procapsid increases the yield of viable phages assembled during the reaction in vitro five- to tenfold. Formation of closed procapsid-like structures requires uniquely the presence of the major head protein and the scaffolding protein. The two proteins interact only when co-produced but not when mixed in vitro after separate synthesis. Gp11 controls the polymerization of gp13 into normal (T=7) and small sized (T=4?) procapsids. Predominant formation of T=7 procapsids requires presence of the portal protein. This implies that the portal protein has to be integrated at an initial stage of the capsid assembly process. Its presence, however, does not have a detectable effect on the rate of procapsid assembly during SPP1 infection. A stable interaction between gp6 and the two major procapsid proteins was only detected when the three proteins are co-produced. Efficient incorporation of a single portal protein in the procapsid appears to require a structural context created by gp11 and gp13 early during assembly, rather than strong interactions with any of those proteins. Gp7, which binds directly to gp6 both in vivo and in vitro, is not necessary for incorporation of the portal protein in the procapsid structure.  相似文献   

11.
Large-scale conformational transitions are involved in the life-cycle of many types of virus. The dsDNA phages, herpesviruses, and adenoviruses must undergo a maturation transition in the course of DNA packaging to convert a scaffolding-containing precursor capsid to the DNA-containing mature virion. This conformational transition converts the procapsid, which is smaller, rounder, and displays a distinctive skewing of the hexameric capsomeres, to the mature virion, which is larger and more angular, with regular hexons. We have used electron cryomicroscopy and image reconstruction to obtain 15 A structures of both bacteriophage P22 procapsids and mature phage. The maturation transition from the procapsid to the phage results in several changes in both the conformations of the individual coat protein subunits and the interactions between neighboring subunits. The most extensive conformational transformation among these is the outward movement of the trimer clusters present at all strict and local 3-fold axes on the procapsid inner surface. As the trimer tips are the sites of scaffolding binding, this helps to explain the role of scaffolding protein in regulating assembly and maturation. We also observe DNA within the capsid packed in a manner consistent with the spool model. These structures allow us to suggest how the binding interactions of scaffolding and DNA with the coat shell may act to control the packaging of the DNA into the expanding procapsids.  相似文献   

12.
P22 serves as a model for the assembly and maturation of icosahedral double-stranded DNA viruses. The viral capsid precursor, or procapsid, is assembled from 420 copies of a 47 kDa coat protein subunit (gp5) that is rich in beta-strand secondary structure. Maturation to the capsid, which occurs in vivo upon DNA packaging, is accompanied by shell expansion and a large increase in the level of protection against deuterium exchange of amide NH groups. Accordingly, shell maturation resembles the final step in protein folding, wherein domain packing and an exchange-protected core become more fully developed [Tuma, R., Prevelige, P. E., Jr., and Thomas, G. J., Jr. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9885-9890]. Here, we exploit recent advances in Raman spectroscopy to investigate the P22 coat protein subunit under conditions which stabilize the monomeric state, viz., in solution at very low concentrations. Under these conditions, the monomer exhibits an elongated shape, as demonstrated by small-angle X-ray scattering. Raman spectra allow the identification of conformation-sensitive marker bands of the monomer, as well as the characterization of NH exchange dynamics for comparison with procapsid and capsid shell assemblies. We show that procapsid assembly involves significant ordering of the predominantly beta-strand backbone. We propose that such ordering may mediate formation of the distinct subunit conformations required for assembly of a T = 7 icosahedral lattice. However, the monomer, like the subunit within the procapsid lattice, exhibits a moderate level of protection against low-temperature NH exchange, indicative of a nascent folding core. The environments and exchange characteristics of key side chains are also similar for the monomeric and procapsid subunits, and distinct from corresponding characteristics of the capsid subunit. The monomer thus represents a compact but metastable folding intermediate along the pathway to assembly of the procapsid and capsid.  相似文献   

13.
The Salmonella typhimurium bacteriophage P22 assembles an icosahedral capsid precursor called a procapsid. The oligomeric portal protein ring, located at one vertex, comprises the conduit for DNA entry and exit. In conjunction with the DNA packaging enzymes, the portal ring is an integral component of a nanoscale machine that pumps DNA into the phage head. Although the portal vertex is assembled with high fidelity, the mechanism by which a single portal complex is incorporated during procapsid assembly remains unknown. The assembly of bacteriophage P22 portal rings has been characterized in vitro using a recombinant, His-tagged protein. Although the portal protein remained primarily unassembled within the cell, once purified, the highly soluble monomer assembled into rings at room temperature at high concentrations with a half time of approximately 1 h. Circular dichroic analysis of the monomers and rings indicated that the protein gained alpha-helicity upon polymerization. Thermal denaturation studies suggested that the rings contained an ordered domain that was not present in the unassembled monomer. A combination of 4,4'-dianilino-1,1'-binapthyl-5,5'-disulfonic acid (bis-ANS) binding fluorescence studies and limited proteolysis revealed that the N-terminal portion of the unassembled subunit is meta-stable and is susceptible to structural perturbation by bis-ANS. In conjunction with previously obtained data on the behavior of the P22 portal protein, we propose an assembly model for P22 portal rings that involves a meta-stable monomeric subunit.  相似文献   

14.
Initiation of P22 procapsid assembly in vivo   总被引:7,自引:0,他引:7  
The procapsids of all double-stranded DNA phages have a unique portal vertex, which is the locus of DNA packaging and DNA injection. Procapsid assembly is also initiated at this vertex, which is defined by the presence of a cyclic dodecamer of the portal protein. Assembly of the procapsid shell of phage P22 requires the gene 5 coat protein and the gene 8 scaffolding protein. We report here that removal of gene product (gp) 1 portal protein of P22 by mutation does not slow the rate of polymerization of coat and scaffolding subunits into shells, indicating that the portal ring is dispensable for shell initiation. Mutant scaffolding subunits specified by tsU172 copolymerize with coat subunits into procapsids at restrictive temperature, and also correctly autoregulate their synthesis. However, the shell structures formed from the temperature-sensitive scaffolding subunits fail to incorporate the portal ring and the three minor DNA injection proteins. This mutation identifies a domain of the scaffolding protein specifically involved in organization of the portal vertex. The results suggest that it is a complex of the scaffolding protein that initiates procapsid assembly and organizes the portal ring.  相似文献   

15.
Assembly of bacteriophage P22 procapsids has long served as a model for assembly of spherical viruses. Historically, assembly of viruses has been viewed as a non-equilibrium process. Recently alternative models have been developed that treat spherical virus assembly as an equilibrium process. Here we have investigated whether P22 procapsid assembly reactions achieve equilibrium or are irreversibly trapped. To assemble a procapsid-like particle in vitro, pure coat protein monomers are mixed with scaffolding protein. We show that free subunits can exchange with assembled structures, indicating that assembly is a reversible, equilibrium process. When empty procapsid shells (procapsids with the scaffolding protein stripped out) were diluted so that the concentration was below the dissociation constant ( approximately 5 microM) for coat protein monomers, free monomers were detected. The released monomers were assembly-competent; when NaCl was added to metastable partial capsids that were aged for an extended period, the released coat subunits were able to rapidly re-distribute from the partial capsids and form whole procapsids. Lastly, radioactive monomeric coat subunits were able to exchange with the subunits from empty procapsid shells. The data presented illustrate that coat protein monomers are able to dissociate from procapsids in an active state, that assembly of procapsids is consistent with reactions at equilibrium and that the reaction follows the law of mass action.  相似文献   

16.
Viral capsids are dynamic structures which self-assemble and undergo a series of structural transformations to form infectious viruses. The dsDNA bacteriophage P22 is used as a model system to study the assembly and maturation of icosahedral dsDNA viruses. The P22 procapsid, which is the viral capsid precursor, is assembled from coat protein with the aid of scaffolding protein. Upon DNA packaging, the capsid lattice expands and becomes a stable virion. Chemical cross-linking analyzed by mass spectrometry was used to identify residue specific inter- and intra-subunit interactions in the P22 procapsids. All the intersubunit cross-links occurred between residues clustered in a loop region (residues 157-207) which was previously identified by mass spectrometry based on hydrogen/deuterium exchange and biochemical experiments. DSP and BS3 which have similar distance constraints (12 angstroms and 11.4 angstroms, respectively) cross-linked the same residues between two subunits in the procapsids (K183-K183), whereas DST, a shorter cross-linker, cross-linked lysine 175 in one subunit to lysine 183 in another subunit. The replacement of threonine with a cysteine at residue 182 immediately adjacent to the K183 cross-linking site resulted in slow spontaneous disulfide bond formation in the procapsids without perturbing capsid integrity, thus suggesting flexibility within the loop region and close proximity between neighboring loop regions. To build a detailed structure model, we have predicted the secondary structure elements of the P22 coat protein, and attempted to thread the prediction onto identified helical elements of cryoEM 3D reconstruction. In this model, the loop regions where chemical cross-linkings occurred correspond to the extra density (ED) regions which protrude upward from the outside of the capsids and face one another around the symmetry axes.  相似文献   

17.
The DNA packaging motor of the Bacillus subtilis bacteriophage ?29 prohead is comprised in part of an oligomeric ring of 174 base RNA molecules (pRNA) positioned near the N termini of subunits of the dodecameric head-tail connector. Deletion and alanine substitution mutants in the connector protein (gp10) N terminus were assembled into proheads in Escherichia coli and the particles tested for pRNA binding and DNA-gp3 packaging in vitro. The basic amino acid residues RKR at positions 3-5 of the gp10 N terminus were central to pRNA binding during assembly of an active DNA packaging motor. Conjugation of iron(S)-1-(p-bromoacetamidobenzyl) ethylenediaminetetraacetate (Fe-BABE) to residue S170C in the narrow end of the connector, near the N terminus, permitted hydroxyl radical probing of bound [(32)P]pRNA and identified two discrete sites proximal to this residue: the C-helix at the junction of the A, C and D helices, and the E helix and the CE loop/D loop of the intermolecular base pairing site.  相似文献   

18.
J Lanman  R Tuma  P E Prevelige 《Biochemistry》1999,38(44):14614-14623
The bacteriophage P22 serves as a model for assembly of icosahedral dsDNA viruses. The P22 procapsid, which constitutes the precursor for DNA packaging, is built from 420 copies of a single coat protein with the aid of stoichiometric amounts of scaffolding protein. Upon DNA entry, the procapsid shell expands and matures into a stable virion. It was proposed that expansion is mediated by hinge bending and domain movement. We have used limited proteolysis to map the dynamic stability of the coat protein domain structures. The coat protein monomer is susceptible to proteolytic digestion, but limited proteolysis by small quantities of elastase or chymotrypsin yielded two metastable fragments (domains). The N-terminal domain (residues 1-180) is linked to the C-terminal domain (residues 205-429) by a protease-susceptible loop (residues 180-205). The two domains remain associated after the loop cleavage. Although only a small change of secondary structure results from the loop cleavage, both tertiary interdomain contacts and subunit thermostability are diminished. The intact loop is also required for assembly of the monomeric coat protein into procapsids. Upon assembly, coat protein becomes largely protease-resistant, baring cleavage within the loop region of about half of the subunits. Loop cleavage decreases the stability of the procapsids and facilitates heat-induced shell expansion. Upon expansion, the loop becomes protease-resistant. Our data suggest the loop region becomes more ordered during assembly and maturation and thereby plays an important role in both of these stages.  相似文献   

19.
Bacteriophage with double-stranded, linear DNA genomes package DNA into pre-assembled icosahedral procapsids through a unique vertex. The packaging vertex contains an oligomeric ring of a portal protein that serves as a recognition site for the packaging enzymes, a conduit for DNA translocation, and the site of tail attachment. Previous studies have suggested that the portal protein of bacteriophage P22 is not essential for shell assembly; however, when assembled in the absence of functional portal protein, the assembled heads are not active in vitro packaging assays. In terms of head assembly, this raises an interesting question: how are portal vertices defined during morphogenesis if their incorporation is not a requirement for head assembly? To address this, the P22 portal gene was cloned into an inducible expression vector and transformed into the P22 host Salmonella typhimurium to allow control of the dosage of portal protein during infections. Using pulse-chase radiolabeling, it was determined that the portal protein is recruited into virion during head assembly. Surprisingly, over-expression of the portal protein during wild-type P22 infection caused a dramatic reduction in the yield of infectious virus. The cause of this reduction was traced to two potentially related phenomena. First, excess portal protein caused aberrant head assembly resulting in the formation of T=7 procapsid-like particles (PLPs) with twice the normal amount of portal protein. Second, maturation of the PLPs was blocked during DNA packaging resulting in the accumulation of empty PLPs within the host. In addition to PLPs with normal morphology, smaller heads (apparently T=4) and aberrant spirals were also produced. Interestingly, maturation of the small heads was relatively efficient resulting in the formation of small mature particles that were tailed and contained a head full of DNA. These data suggest that incorporation of portal vertices into heads occurs during growth of the coat lattice at decision points that dictate head assembly fidelity.  相似文献   

20.
We applied whole-cell electron cryotomography to the archaeon Sulfolobus infected by Sulfolobus turreted icosahedral virus (STIV), which belongs to the PRD1-Adeno lineage of dsDNA viruses. STIV infection induced the formation of pyramid-like protrusions with sharply defined facets on the cell surface. They had a thicker cross-section than the cytoplasmic membrane and did not contain an exterior surface protein layer (S-layer). Intrapyramidal bodies often occupied the volume of the pyramids. Mature virions, procapsids without genome cores, and partially assembled particles were identified, suggesting that the capsid and inner membrane coassemble in the cytoplasm to form a procapsid. A two-class reconstruction using a maximum likelihood algorithm demonstrated that no dramatic capsid transformation occurred upon DNA packaging. Virions tended to form tightly packed clusters or quasicrystalline arrays while procapsids mostly scattered outside or on the edges of the clusters. The study revealed vivid images of STIV assembly, maturation, and particle distribution in cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号