首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A cDNA containing the coding region for the complete amino acid sequence of wound-induced proteinase Inhibitor I from tomato leaves was constructed in the plasmid pUC9 and characterized. The open reading frame codes for a protein of 111 amino acids. This deduced amino acid sequence revealed the presence of a 42-amino acid N-terminal sequence that is not found in the native protein. This sequence appears to contain a 23-amino acid segment typical of a signal sequence followed by a 19-amino acid sequence containing 9 charged amino acids. The 42-amino acid sequence is apparently lost during maturation to the native Inhibitor I and represents 38% of the translated protein. The Inhibitor I amino acid sequence contains 71% identity with potato tuber Inhibitor I sequence and 35% identity with an inhibitor from the leech.  相似文献   

2.
A novel member of the proteinase Inhibitor I family having a trypsin inhibitor specificity was isolated from the fruit of the wild tomato species Lycopersicon peruvianum (L.) Mill. (LA 107) and characterized. The protein is among the isoinhibitors of Inhibitor I that comprise 50% of the soluble proteins in the fruit of this wild species of tomato. A cDNA corresponding to the inhibitor protein and mRNA was isolated and characterized. The Inhibitor I mRNA represented 0.06% of the poly(A) RNA and gene copy number reconstruction experiments gave an estimate of two to four genes/haploid genome. The open reading frame of the cDNA codes for a protein of 111 amino acids having a 42-amino acid prepropolypeptide. The NH2-terminal sequence of the first 21 amino acids of the purified Inhibitor I protein confirmed that the cDNA was identical to the protein. The amino acid sequence of the L. peruvianum fruit Inhibitor I exhibits 74% identity with the wound-inducible Inhibitor I from tomato leaves. Whereas all previously identified members of the Inhibitor I family have either Met, Leu, or Asp at the P1 site and can inhibit enzymes such as chymotrypsin, subtilisin, and elastase, the fruit Inhibitor I possesses Lys at the P1 position. Thus, this is the first member of the extensive Inhibitor I family from plants and animals that exhibits trypsin inhibitory specificity. The presence of this inhibitor in wild tomato fruit may reflect a functional role to protect the tissues against herbivory.  相似文献   

3.
A cDNA and a corresponding genomic clone encoding a protein with partial identity to type II proteinase inhibitors from potato, tomato and Nicotiana alata, were isolated from tobacco libraries. The protein of 197 amino acids contains a putative signal peptide of 24 residues and three homologous domains, each with a different reactive site. The tobacco PI-II gene is not expressed in leaves of healthy plants, but is locally induced in leaves subjected to different types of stress (TMV infection, wounding, UV irradiation) and upon ethephon treatment. As opposed to the analogous PI-II genes of potato and tomato, the tobacco gene is not systemically induced by wounding or pathogenic infection. A far-upstream region in the PI-II promoter, containing various direct and indirect repeats, shares considerable sequence similarity to a similar region in the stress-inducible Cu/Zn-superoxide dismutase gene of N. plumbaginifolia.  相似文献   

4.
A cDNA clone, NA-PI-II, encoding a protein with partial identity to proteinase inhibitor (PI) II of potato and tomato has been isolated from a cDNA library constructed from Nicotiana alata stigma and style mRNA. The cDNA encodes a polypeptide of 397 amino acids with a putative signal peptide of 29 amino acids and six repeated domains, each with a potential reactive site. Domains 1 and 2 have chymotrypsin-specific sites and domains 3, 4, 5, and 6 have sites specific for trypsin. In situ hybridization experiments demonstrated that expression of the gene is restricted to the stigma of both immature and mature pistils. Peptides with inhibitory activity toward chymotrypsin and trypsin have been isolated from stigmas of N. alata. The N-terminal amino acid sequence obtained from this protein preparation corresponds to six regions in the cDNA clone NA-PI-II. The purified PI protein preparation is likely to be composed of a mixture of up to five similar peptides of approximately 6 kD, produced in vivo by proteolytic processing of a 42-kD precursor. The PI may function to protect the reproductive tissue against potential pathogens.  相似文献   

5.
Genomic blotting of restriction fragments of Russet Burbank DNA indicated that at least 6 copies of Inhibitor I are present in the tetraploid potato genome. A library of potato genes in bacteriophage was screened for the presence of Inhibitor I genes using a wound-inducible tomato Inhibitor I cDNA as a hybridization probe. One phage with an insert of 13.1 kb was isolated that hybridized most strongly with the probe. A 4.2 kb Eco RI fragment containing the gene was isolated from the clone and 2.2 kb region was sequenced that included about 800 bp of both the 5 and 3 regions. The gene contained two introns of 479 and 417 bp respectively, and the splice junctions were typical of other eukaryotic genes. Putative TATAA and CAAT boxes were identified. The nucleotide sequence, when compared with a wound-inducible tomato Inhibitor I cDNA, exhibited over 90% identity. The gene codes for a prepro-Inhibitor I protein of 96 amino acids. The putative pre-sequence of 19 amino acids, differs in only one residue from that of tomato Inhibitor I. The potato pro-sequence, however, is lacking a tetrapeptide that is found in the tomato pro-sequence in the region of pro-peptide processing. This deletion, together with a substitution of a Gln for a Leu (4 residues toward the N terminus) provides an explanation for the differences at the N-termini between tomato and potato Inhibitor I natural proteins by providing different processing sites in the two pro-inhibitors. Thus, amino acid sequence differences between the N termini of tomato and potato Inhibitor I are easily explained by the mutational events. The different proposed pro-processing sites of the tomato and potato inhibitors suggest that a processing protease may be present in the vacuole with a specificity for Asn-X and Gln-X bonds.This is Scientific Paper No. 7493, Project 1791, College of Agriculture and Home Economics Research Center, Washington State UniversityThis is Scientific Paper No. 7493, Project 1791, College of Agriculture and Home Economics Research Center, Washington State University  相似文献   

6.
Proteinase inhibitors I and II were purified to electrophoretic homogeneity from leaves of tomato plants induced by either wounding intact plants or by supplying excised plants with the proteinase inhibitor inducing factor. Affinity chromatography with chymotrypsin-Sepharose was employed as a final purification step for each inhibitor. The tomato leaf inhibitors are very similar to potato tuber inhibitors I and II in subunit molecular weight, composition, and inhibitory activities against chymotrypsin, trypsin, and subtilisin. However, unlike the potato tuber which contains multiple isoinhibitors by isoelectric focusing, the tomato leaf exhibits only two isoinhibitor forms of inhibitor I and a single form of inhibitor II. The molecular weight of native potato inhibitor I was reevaluated by rigorous ultracentrifugal analysis and compared with data from previous analyses. The data confirm that native inhibitor I has a native Mr of about 41,000 and is a pentamer. Inhibitor II has a molecular weight of near 23,000 and is a dimer.  相似文献   

7.
8.
Summary Two cDNA clones containing the complete coding region of a developmentally controlled (tuber-specific) as well as environmentally inducible (wound-inducible) gene from potato (Solanum tuberosum) have been sequenced. The open reading frame codes for 154 amino acids. Its sequence is highly homologous to the proteinase inhibitor II from tomato, indicating that the cDNA's encode the corresponding proteinase inhibitor II of potato. In addition the putative potato proteinase inhibitor II contains a sequence which is completely homologous with that of another small peptide proteinase inhibitor from potato, called PCI-I. Evidence is presented that this small peptide is probably derived from the proteinase inhibitor II by posttranslational processing.Northern type experiments using RNA from wounded and nonwounded leaves demonstrate that RNA homologous to the putative proteinase inhibitor II cDNA's accumulates in leaves as a consequence of wounding, whereas normally the expression of this gene is under strict developmental control, since it is detected only in tubers of potato (Rosahl et al. 1986). In addition the induction of this gene in leaves can also be achieved by the addition of different polysaccharides such as poly galacturonic acid or chitosan. In contrast to the induction of its expression by wounding in leaves, wounding of tubers results in a disappearance of the proteinase II inhibitor m-RNA from these organs.  相似文献   

9.
A 2112-bp cDNA clone (lambda CT29) encoding the entire sequence of the human lysosomal acid phosphatase (EC 3.1.3.2) was isolated from a lambda gt11 human placenta cDNA library. The cDNA hybridized with a 2.3-kb mRNA from human liver and HL-60 promyelocytes. The gene for lysosomal acid phosphatase was localized to human chromosome 11. The cDNA includes a 12-bp 5' non-coding region, an open reading frame of 1269 bp and an 831-bp 3' non-coding region with a putative polyadenylation signal 25 bp upstream of a 3' poly(A) tract. The deduced amino acid sequence reveals a putative signal sequence of 30 amino acids followed by a sequence of 393 amino acids that contains eight potential glycosylation sites and a hydrophobic region, which could function as a transmembrane domain. A 60% homology between the known 23 N-terminal amino acid residues of human prostatic acid phosphatase and the N-terminal sequence of lysosomal acid phosphatase suggests an evolutionary link between these two phosphatases. Insertion of the cDNA into the expression vector pSVL yielded a construct that encoded enzymatically active acid phosphatase in transfected monkey COS cells.  相似文献   

10.
We isolated a cDNA encoding a novel unconventional myosin from scallop mantle tissue (scallop unconventional myosin: ScunM) and determined the nucleotide sequence. It comprises 2,739 bp with 5' and 3'-noncoding sequences and has an open reading frame of 2,334 bp that encodes 778 amino acids. While ScunM has a motor domain and a short tail domain without having light chain-binding IQ motifs like myosin XIV, the deduced amino acid sequence exhibits low homology, 30-36%, to known myosins. Phylogenetic analysis of the motor domain suggested that ScunM belongs to a novel unconventional myosin class. ScunM has an insertion of 67 amino acids in the putative actin-binding site (loop2 site). Western blot analysis with an antibody produced against the N-terminal region revealed that ScunM was strongly expressed in the mantle and mantle pallial cell layer of scallop.  相似文献   

11.
A cDNA segment from Arabidopsis thaliana with similarity to the ribA gene of Bacillus subtilis was sequenced. A similar gene was cloned from tomato. The open reading frame of A. thaliana was fused to the malE gene of Escherichia coli and was expressed in a recombinant E. coli strain. The recombinant fusion protein was purified and shown to have GTP cyclohydrolase II activity as well as 3,4-dihydroxy-2-butanone 4-phosphate synthase activity. The cognate gene was amplified by polymerase chain reaction from chromosomal Arabidopsis DNA and was shown to contain six introns. Intron 4 is located in the region connecting the GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase domain of the putative domains catalyzing the two reaction steps. By comparison with the bacterial ribA gene, the Arabidopsis gene contains an additional 5' element specifying about 120 amino acid residues. This segment contains numerous serine and threonine residues and does not show similarity with other known sequences. The N-terminal segment is not required for catalytic activity and is likely to serve as signal sequence for import into chloroplasts.  相似文献   

12.
Deussing J  Tisljar K  Papazoglou A  Peters C 《Gene》2000,251(2):165-173
A murine cysteine protease of the papain family was identified by dbEST-database search. A 1.87kb full-length cDNA encoding a predicted polypeptide of 462 amino acids was sequenced. Since the encoded polypeptide shows more than 80% sequence identity with human cathepsin F, it is most likely that this cDNA represents the murine homologue of cathepsin F, and it was therefore named accordingly. Murine cathepsin F exhibits a domain structure typical for papain-like cysteine proteases, a 20 amino acid N-terminal hydrophobic signal sequence followed by an extraordinarily long propeptide of 228 amino acids and the domain of the mature protease comprising 214 amino acids. The mature region contains all features characteristic of a papain-like cysteine protease, including the highly conserved cysteine, histidine and asparagine residues of the 'catalytic triad'. Genomic clones covering the murine cathepsin F gene were isolated. The mouse cathepsin F gene consists of 14 exons and 13 introns and spans 5.8kb. Murine cathepsin F was mapped to chromosome 19, a region with synteny homology to a region of human chromosome 11 to which human cathepsin F has been mapped previously. Northern blot analysis of RNA from multiple tissues revealed a ubiquitous expression of cathepsin F in mouse and man.  相似文献   

13.
14.
Prosystemin is the 200-amino-acid prohormone of the 18-amino-acid polypeptide called systemin, a systemic mobile signal that activates the synthesis of defense genes in solanaceous plants in response to herbivore attacks. The unusual primary structural features of the tomato prosystemin cDNA and protein provided an extraordinary challenge in devising an expression system to obtain the full-length protein. Prosystemin expression inhibited the growth of a eukaryotic and several prokaryotic hosts used. Prosystemin was initially synthesized as a truncated protein of 185 amino acids in length using a T7 RNA polymerase expression system in E. coli strain BL21[DE3]. The truncation was found to be due to two factors: (1) the intramolecular associations of the 5' coding region of the prosystemin sequence with the expression vector's ribosome binding site and (2) the presence of a translation start site just prior to the amino acid methionine at position 15. Mutations that permitted the synthesis of the full-length prosystemin protein were introduced into the amino-terminal 5' coding region of the prosystemin cDNA. A 199-amino-acid recombinant prosystemin lacking the N-terminal methionine was purified from lysates and confirmed by N-terminal amino acid sequence and immunoblot analysis.  相似文献   

15.
The complete nucleotide sequence of the Escherichia coli uvrB gene has been determined. The coding region of the uvrB gene consists of 2019 nucleotides which direct the synthesis of a 673 amino-acid long polypeptide with a calculated molecular weight of 76.614 daltons. Comparison of the UvrB protein sequence to other known DNA repair enzymes revealed that 2 domains of the UvrB protein (domain I = 6 amino acids, domain II = 14 amino acids) are also present in the protein sequence of the uvrC gene. We show that the structural homologies between UvrB and UvrC are as well reflected by the cross-reactivity of anti-uvrB and anti-uvrC antibodies with UvrC and UvrB protein respectively. In the N-terminal part of UvrB, domain III (17 amino acids) shows a strong homology with one part of the AlkA gene product. Adjacent to domain III, an ATP binding site consensus sequence is found in domain IV. The uvrB5 mutant gene from strain AB1885 has been cloned on plasmid pBL01. We show that the uvrB5 mutation is due to a point deletion of a CG basepair and results in the synthesis of an 18 kD protein composed of the 113 N-terminal amino acids of the wild type uvrB gene and a 43 amino acid long tail coded in the -1 frame.  相似文献   

16.
We have determined the nucleotide sequence of the Drosophila DNA topoisomerase II gene. Data from primer extension and S1 nuclease protection experiments were combined with comparisons of genomic and cDNA sequences to determine the structure of the mature messenger RNA. This message has a large open reading frame of 4341 nucleotides. The length of the predicted protein is 1447 amino acids with a molecular weight of 164,424. Topoisomerase II can be divided into three domains: (1) an N-terminal region with homology to the B (ATPase) subunit of the bacterial type II topoisomerase, DNA gyrase; (2) a central region with homology to the A (breaking and rejoining) subunit of DNA gyrase; (3) a C-terminal region characterized by alternating stretches of positively and negatively charged amino acids. DNA topoisomerase II from the fruit fly shares significant sequence homology with those from divergent sources, including bacteria, bacteriophage T4 and yeasts. The location and distribution of homologous stretches in these sequences are analyzed.  相似文献   

17.
Recombinant clones with cDNA inserts coding for a new serine protease (hepsin) have been isolated from cDNA libraries prepared from human liver and hepatoma cell line mRNA. The total length of the cDNA is approximately 1.8 kilobases and includes a 5' untranslated region, 1251 nucleotides coding for a protein of 417 amino acids, a 3' untranslated region, and a poly(A) tail. The amino acid sequence coded by the cDNA for hepsin shows a high degree of identity to pancreatic trypsin and other serine proteases present in plasma. It also exhibits features characteristic of zymogens to serine proteases in that it contains a cleavage site for protease activation and the highly conserved regions surrounding the His, Asp, and Ser residues that participate in enzyme catalysis. In addition, hepsin lacks a typical amino-terminal signal peptide. Hydropathy analysis of the protein sequence, however, revealed a very hydrophobic region of 27 amino acids starting 18 residues downstream from the apparent initiator Met. This region may serve as an internal signal sequence and a transmembrane domain. This putative transmembrane domain could be involved in anchoring hepsin to the cell membrane and orienting it in such a manner that its carboxyl terminus, containing the catalytic domain, is extracellular.  相似文献   

18.
19.
Fujimi TJ  Kariya Y  Tsuchiya T  Tamiya T 《Gene》2002,284(1-2):225-231
A protein disulfide isomerase (PDI) coding sequence was cloned from a cDNA library derived from carrot (Daucus carota L.) somatic embryos. The cDNA is 2060 bp in length and encodes for a protein of 581 amino acids and molecular weight of 64.4 kDa. Primary structure analysis of the deduced protein revealed two thioredoxin-like active sites and an endoplasmic reticulum-retention signal at its C-terminus, which is also found in PDIs in plants and animals. Although between the carrot protein and other plant PDIs there is only about 30% identity, the active site regions are almost identical. The corresponding mRNA was found in varying amounts, in all tissues investigated. A recombinant protein expressed from the carrot cDNA clone effectively catalyzed both glutathione-insulin transhydrogenation and the oxidative renaturation of denatured RNase A. These results suggest that the protein coded for by the carrot gene is a novel member of the PDI family in plants. We therefore designated this novel carrot gene PDIL1. The protein expressed by the PDIL1 cDNA sequence had a highly acidic stretch at its N-terminal region (no such domain exists in known plant PDIs), and was located far from known plant PDIs on a maximum likelihood tree. The PDIL1 gene, together with closely-related genes identified in Arabidopsis and tomato, was suggested to belong to a novel subfamily of PDIs.  相似文献   

20.
We previously isolated a pollen-specific gene encoding a pollen tube wall-associated glycoprotein with a globular domain and an extensin domain from maize (mPex1). To evaluate which protein domains might be important for function, we isolated a second monocot gene (mPex2) and a dicot gene (tPex). Each gene encodes a signal sequence, an N-terminal globular domain comprised of a variable region, a leucine-rich repeat (LRR) with an adjacent cysteine-rich region, a transition region and an extensin-like C-terminal domain. The LRRs of the maize and tomato Pex proteins are highly conserved. Although the extensin domains in the maize and tomato proteins vary in length and in amino acid sequence, they are likely to be structurally conserved. Additional putative Pex gene sequences were identified by either GenBank search (Arabidopsis) or PCR (sorghum and potato); all encode conserved LRRs. The presence of a conserved LRR in the known and potential Pex proteins strongly suggests that this motif is involved in the binding of a specific ligand during pollen tube growth. Gene expression studies using RNA and protein blotting as well as promoter-reporter gene fusions in transient and stable transformation indicate that the tomato Pex gene is pollen-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号