首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
大脑神经回路高度有序的神经元活动是高级脑功能的基础,神经元之间的突触联结是神经回路的关键功能节点。神经突触根据神经元活动调整其传递效能的能力,亦即突触可塑性,被认为是神经回路发育和学习与记忆功能的基础。其异常则可能导致如抑郁症和阿尔茨海默病等精神、神经疾病。将介绍这两种疾病与突触可塑性的关系,聚焦于相关分子和细胞机制以及新的研究、治疗手段等进展。  相似文献   

2.
神经胶质细胞与突触可塑性研究新进展   总被引:2,自引:0,他引:2  
Xie YF 《生理科学进展》2007,38(2):111-115
突触的可塑性是研究学习与记忆的基础,很长时间以来人们对突触的可塑性研究主要集中在神经元和突触上;而胶质细胞的作用较少受到注意。最近的研究发现胶质细胞也参与突触的构成并影响突触的活动。研究表明中枢神经系统中的胶质细胞包括星形胶质细胞、小胶质细胞和少突胶质细胞可分别通过谷氨酸、丝氨酸、甘氨酸、ATP等信号调节突触的可塑性,从而为突触的可塑性研究提供了新的思路和方向,并有助于阐明突触的发生以及学习与记忆的机制。  相似文献   

3.
Wu XW  Li M 《生理科学进展》2005,36(3):259-261
Eph受体酪氨酸激酶及其配体ephrin广泛参与神经系统的发育,如轴突导向、细胞迁移、体节形成和血管生成。最近研究显示的Ephephrin在突触的定位提示其与突触可塑性有关。Ephephrin对成年神经系统的可塑性、学习和记忆,以及神经损伤后的再生可能具有重要的调节作用。  相似文献   

4.
突触可塑性是学习记忆的基础,其分子机制是理解记忆形成和维持的关键,也为神经退行性疾病的预防与治疗提供了新靶点。肌球蛋白超家族广泛存在于人体各种组织细胞中,主要分为常规肌球蛋白和非常规肌球蛋白。越来越多的研究发现,非常规肌球蛋白参与了许多重要的生命活动,尤其是在神经系统对突触可塑性的调节中,起到了十分重要的作用。  相似文献   

5.
突触的可塑性与学习,记忆机制   总被引:11,自引:0,他引:11  
位于哺乳动物海马、小脑皮层的不同类型的可塑性突触,分别具有突触传递的长时程强化(LTP)或抑制(LTD)现象,它们可能是某些经典条件反射形成的基础。以LTD型突触为记忆装置的小脑局部神经网络,具有典型的适应控制能力。突触可塑性的另一类表现是突触前纤维长芽,有证据表明,伴随大脑—红核系统条件反射的建立,在红核神经元胞体附近有新的突触形成,这可能是长期记忆的基础。  相似文献   

6.
突触可塑性是神经系统所具有的重要特征,也是神经系统实现其功能的重要保障。按照持续的时间划分,突触可塑性可分为短时程突触可塑性和长时程突触可塑性。短时程突触可塑性包括短时程增强和短时程压抑两种类型。与长时程突触可塑性不同,短时程突触可塑性的产生主要依赖于神经递质释放概率的变化,其往往决定神经回路的信息处理和反应模式,不仅直接参与了对输入信号的识别和处理,而且还可对长时程突触可塑性的表达产生重要影响。  相似文献   

7.
钙依赖性突触的可塑性   总被引:3,自引:0,他引:3  
Dou Y  Yan J  Wu YY  Cui RY  Lu CL 《生理科学进展》2001,32(1):35-38
突触前和突触后细胞内钙离子([Ca^2 ]i)在短时程和长时程突触的可塑性中,发挥着重要的住处传递作用。兴奋后残留[Ca^2 ]i,可以激发短时程突触增强。突触前[Ca^2 ]i可以影响被抑制的突触前膜囊泡的更新,并准确编码突前和突触后信息,产生截然相反的长时程突触修(LTP或LTD)。  相似文献   

8.
《生命科学研究》2015,(6):536-540
突触可塑性在学习记忆中发挥了重要作用,AMPA(α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid,AMPA)受体功能和运输的调节是突触可塑性机制研究的重要环节。在突触可塑性发生过程中,激酶和磷酸酶能够调节AMPA受体C末端的磷酸化水平,进而影响AMPA受体运输。对于AMPA受体磷酸化的研究能够加深我们对突触可塑性机制的理解。  相似文献   

9.
牛磺酸是哺乳动物中枢神经系统中含量最为丰富的自由氨基酸之一,具有许多认定的神经生理功能。最新的研究结果表明,用牛磺酸孵育脑片可以诱导兴奋性突触传递的持久增强效应。虽然牛磺酸引起的这种持久增强不是由于活动或经验所导致的突触效能的改变,但与反映突触可塑性的长时程增强具有许多共同特征,分享部分共同机制。同时,药理学实验提示,神经元对牛磺酸的摄取可能是长时程增强诱导的关键步骤。  相似文献   

10.
张汉斌  潘越  汪洋  杨静  马欢 《生命科学》2020,32(7):731-737
自噬是生物体内活细胞通过清除特定蛋白质和细胞器维持自身动态平衡的一个保守进程。自噬受损会导致异常蛋白累积,从而影响大脑的正常生理功能。越来越多的研究表明,神经元自噬还可以响应神经元活动,选择性靶向降解突触蛋白,进而调控突触可塑性。现对神经元自噬在突触可塑性中的具体功能及其分子机制进行综述。  相似文献   

11.
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)—the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite.  相似文献   

12.
Direction selectivity (DS) of simple cells in the primary visual cortex was recently suggested to arise from short-term synaptic depression in thalamocortical afferents (Chance F, Nelson S, Abbott L (1998), J. Neuroscience 18(12): 4785–4799). In the model, two groups of afferents with spatially displaced receptive fields project through either depressing and non-depressing synapses onto the V1 cell. The degree of synaptic depression determines the temporal phase advance of the response to drifting gratings. We show that the spatial displacement and the appropriate degree of synaptic depression required for DS can develop within an unbiased input scenario by means of temporally asymmetric spike-timing dependent plasticity (STDP) which modifies both the synaptic strength and the degree of synaptic depression. Moving stimuli of random velocities and directions break any initial receptive field symmetry and produce DS. Frequency tuning curves and subthreshold membrane potentials akin to those measured for non-directional simple cells are thereby changed into those measured for directional cells. If STDP is such that down-regulation dominates up-regulation the overall synaptic strength adapts in a self-organizing way such that eventually the postsynaptic response for the non-preferred direction becomes subthreshold. To prevent unlearning of the acquired DS by randomly changing stimulus directions an additional learning threshold is necessary. To further protect the development of the simple cell properties against noise in the stimulus, asynchronous and irregular synaptic inputs are required.  相似文献   

13.
Highly stereotyped patterns of neuronal connections are laid down during the development of the nervous system via a range of activity independent and activity dependent mechanisms. Whereas the coarse hard-wiring of the nervous system appears to rely on molecular recognition events between the neuron, its pathway, and its target, the establishment of precisely patterned functional circuits is thought to be driven by neuronal activity. In this review we discuss the role that the neuronal cell adhesion molecule (NCAM) plays in morphological plasticity. Recent studies on NCAM and its probable species homologue in Aplysia (apCAM) suggests that an individual CAM can function to both promote synaptic plasticity and maintain the structure of the synapse. In the adult brain, changes between stability and plasticity are likely to underlie dynamic morphological changes in synaptic structures associated with learning and memory. In this review we use NCAM as an example to illustrate mechanisms that can change the function of an individual CAM from a molecule that promotes plasticity to one that does not. We also discuss evidence that NCAM promotes plasticity by activating a conventional signal transduction cascade, rather than by modulating adhesion perse. Finally, we consider the evidence that supports a role for NCAM in learning and memory. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Our modeling study examines short-term plasticity at the synapse between afferents from electroreceptors and pyramidal cells in the electrosensory lateral lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus. It focusses on steady-state filtering and coherence-based coding properties. While developed for electroreception, our study exposes general functional features for different mixtures of depression and facilitation. Our computational model, constrained by the available in vivo and in vitro data, consists of a synapse onto a deterministic leaky integrate-and-fire (LIF) neuron. The synapse is either depressing (D), facilitating (F) or both (FD), and is driven by a sinusoidally or randomly modulated Poisson process. Due to nonlinearity, numerically computed input-output transfer functions are used to determine the filtering properties. The gain of the response at each sinusoidally modulated frequency is computed by dividing the fitted amplitudes of the input and output cycle histograms of the LIF models. While filtering is always low-pass for F alone, D alone exhibits a gain resonance (non-monotonicity) at a frequency that decreases with increasing recovery time constant of synaptic depression (tau(d)). This resonance is mitigated by the presence of F. For D, F and FD, coherence improves as the synaptic conductance time constant (tau(g)) increases, yet the mutual information per spike decreases. The information per spike for D and F follows opposite trends as their respective time constants increase. The broadband but non-monotonic gain and coherence functions seen in vivo suggest that D and perhaps FD dynamics are involved at this synapse. Our results further predict that the likely synaptic configuration is a slower tau(g), e.g. via a mixture of AMPA and NMDA synapses, and a relatively smaller synaptic facilitation time constant (tau(f)) and larger tau(d) (with tau(f) smaller than tau(d) and tau(g)). These results are compatible with known physiology.  相似文献   

15.
Parkinson's disease (PD)-like symptoms and cognitive deficits are inducible by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Since cognitive abilities, including memory formations rely also on hippocampus, we set out to clarify the effects of MPTP on hippocampal physiology. We show that bath-application of MPTP (25?μM) to acute hippocampal slices enhanced AMPA receptor-mediated field excitatory postsynaptic potentials (AMPAr-fEPSPs) transiently, whereas N-methyl-D-aspartate (NMDA) receptor-mediated fEPSPs (NMDAr-fEPSPs) were facilitated persistently. The MPTP-mediated transient AMPAr-fEPSP facilitation was antagonized by the dopamine D2-like receptor antagonists, eticlopride (1?μM) and sulpiride (1 and 40?μM). In contrast, the persistent enhancement of NMDAr-fEPSPs was prevented by the dopamine D1-like receptor antagonist SCH23390 (10?μM). In addition, we show that MPTP decreased paired-pulse facilitation of fEPSPs and mEPSCs frequency. Regarding activity-dependent synaptic plasticity, 25?μM MPTP transformed short-term potentiation (STP) into a long-term potentiation (LTP) and caused a slow onset potentiation of a non-tetanized synaptic input after induction of LTP in a second synaptic input. This heterosynaptic slow onset potentiation required activation of dopamine D1-like and NMDA-receptors. We conclude that acute MPTP application affects basal synaptic transmission by modulation of presynaptic vesicle release and facilitates NMDAr-fEPSPs as well as activity-dependent homo- and heterosynaptic plasticity under participation of dopamine receptors.  相似文献   

16.
17.
We summarize the reviews and research papers submitted by speakers at a discussion meeting on Synaptic Plasticity in Health and Disease held at the Royal Society, London on 2–3 December 2013, and a subsequent satellite meeting convened at the Royal Society/Kavli Centre at Chicheley Hall on 4–5 December 2013. Together, these contributions give an overview of current research and controversies in a vibrant branch of neuroscience with important implications for the understanding of many forms of learning and memory, and a wide spectrum of neurological and cognitive disorders.  相似文献   

18.
The synaptic plasticity and memory hypothesis asserts that activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation and is both necessary and sufficient for the encoding and trace storage of the type of memory mediated by the brain area in which it is observed. Criteria for establishing the necessity and sufficiency of such plasticity in mediating trace storage have been identified and are here reviewed in relation to new work using some of the diverse techniques of contemporary neuroscience. Evidence derived using optical imaging, molecular-genetic and optogenetic techniques in conjunction with appropriate behavioural analyses continues to offer support for the idea that changing the strength of connections between neurons is one of the major mechanisms by which engrams are stored in the brain.  相似文献   

19.
In the companion paper we presented extended simulations showing that the recently observed spike-timing dependent synaptic plasticity can explain the development of simple cell direction selectivity (DS) when simultaneously modifying the synaptic strength and the degree of synaptic depression. Here we estimate the spatial shift of the simple cell receptive field (RF) induced by the long-term synaptic plasticity, and the temporal phase advance caused by the short-term synaptic depression in response to drifting grating stimuli. The analytical expressions for this spatial shift and temporal phase advance lead to a qualitative reproduction of the frequency tuning curves of non-directional and directional simple cells. In agreement with in vivo recordings, the acquired DS is strongest for test gratings with a temporal frequency around 1–4 Hz. In our model this best frequency is determined by the width of the learning function and the time course of depression, but not by the temporal frequency of the training stimuli. The analysis further reveals the instability of the initially symmetric RF, and formally explains why direction selectivity develops from a non-directional cell in a natural, directionally unbiased stimulation scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号