首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
Autotaxin(ATX)是一个分泌型糖蛋白,具有磷酸二酯酶(PDE)活性,是胞外焦磷酸酶/磷酸二酯酶(ENPP)家族的一员.ATX还具有溶血磷脂酶D(lysoPLD)活性,能够以溶血磷脂酰胆碱(lysophosphatidylcholjne,LPC)为底物催化生成溶血磷脂酸(lysophosphatidic acid,LPA).ATX在很多肿瘤细胞中都有高表达,在肿瘤的发生、发展过程中有着重要作用,被认为是肿瘤治疗中一个可能的靶位.此外,ATX在神经系统、免疫系统中也发挥重要作用.目前已经建立了一系列快速检测ATX活性的方法,并在此基础上研发了相关疾病的诊断技术.基于ATX的多功能性,对其表达调控机理的研究和抑制剂的开发成为当前的研究热点.  相似文献   

2.
Autotaxin(ATX)是催化溶血磷脂酸(lysophosphatidic acid, LPA)生成的关键酶, LPA可以与细胞膜上至少6种G蛋白偶联受体(称为LPA受体1-6)结合,激活各种信号转导通路,在多种生理和病理过程中发挥重要作用. ATX的表达在转录、转录后及分泌过程中受到多水平的调控,近期的研究还发现了ATX表达的表观遗传调控机制.肿瘤微环境中ATX和LPA可以促进肿瘤细胞的增殖和迁移,因此ATX-LPA通路被认为是一种潜在的癌症治疗靶点.目前,人们已经研发了多种ATX抑制剂,并发现具有临床应用潜力.本文重点关注ATX的表达调控机制和生物学功能,阐释ATX-LPA信号轴调控的生理和病理意义.  相似文献   

3.
溶血磷脂酸(lysophosphatidic acid,LPA)是一种结构简单的生物活性脂质分子,可通过与细胞膜上的LPA受体(lysophosphatidic acid receptors,LPARs)结合参与调控细胞生命活动,在多种生理和病理过程中发挥作用.分泌型糖蛋白Autotaxin(ATX)具溶血磷脂酶D(l...  相似文献   

4.
[目的]利用哺乳细胞表达系统表达人ATX蛋白,并对其进行纯化、酶学性质分析。[方法]以pFastBacTMHTAATX质粒为模板,PCR扩增ATX基因,并连接至质粒pInsulator-8His,构建真核表达质粒pInsulator-ATX-8His,经双酶切鉴定后,并瞬时转染至HEK293F细胞,SDS-PAGE检测ATX的表达。通过Ni柱和凝胶层析两步法纯化ATX,HPLC鉴定ATX蛋白的纯度。利用Bis-pNPP底物检测纯化ATX的活性及酶学性质。[结果]真核表达质粒pInsulator-ATX-8His构建成功,并在HEK293F细胞中成功表达,经纯化后ATX蛋白纯度达到98%,并且纯化的ATX具有磷酸二酯酶的活性。酶学性质分析,该酶反应最适pH值为9.0,在0~50℃有较好的热稳定性,金属螯合剂EDTA可抑制ATX活性,金属离子Ca~(2+)、Mg~(2+)、Zn~(2+)促进ATX的活性。[结论]实现了人ATX在哺乳细胞中的表达,获得了高纯度的ATX蛋白,完成了ATX酶学性质的分析。  相似文献   

5.
副溶血弧菌是(Vibrio parahaemolyticus)常见的食源性病原菌,可污染多种水产品,并引起人的食物中毒,其致病性与溶血素密切相关,如直接耐热溶血素(TDH)、TDH-相关溶血素(TRH)、不耐热溶血素(TLH)。用PCR方法对分离自浙江省部分地区的副溶血弧菌临床和海产品分离株的3种溶血素基因进行检测。结果表明,所有副溶血弧菌菌株均可检测到tlh基因;11株临床分离株均检测到tdh基因,而42株水产品分离株中只有1株检出tdh基因,携带tdh的分离株神奈川试验(KP)均为阳性。所有分离菌株中均未检测到trh基因以及其尿素酶试验呈阴性,由此可知trh基因可能与尿素酶基因连锁。副溶血弧菌分离株中致病性相关毒力因子TDH的阳性率极低,然而副溶血弧菌性食物中毒发生率较高,它们之间的关系及其发病机制还有待深入研究。  相似文献   

6.
九孔鲍鲍苗脱板过程中细菌胞外产物的研究   总被引:2,自引:0,他引:2  
自2002年后半年开始,汕尾出现大规模九孔鲍鲍苗脱板问题。为了解养殖环境中的细菌(主要是弧菌)对鲍苗的影响,于汕尾一养殖场跟踪观察多次鲍鱼育苗过程,取鲍苗正处于脱板过程中的水样和采苗板样用TCBS平板分离出25株菌,测定其分泌酪蛋白酶、胰蛋白酶和明胶酶3种胞外酶的能力,并进行其溶血现象分析。结果表明,产酶菌株达到17株,其中10株菌兼具分泌溶血素的能力。对这10株菌进行了种类鉴定,表明它们是副溶血弧菌(4株)、溶藻弧菌(2株)、腐败希瓦菌(3株)和杀鲑气单胞菌(1株)。  相似文献   

7.
目的 调查无临床症状健康人肠道内有无溶血菌的存在,并利用分子方法对溶血菌进行鉴定。方法 通过血平板分离培养,对17例无临床症状个体肠道内溶血菌的存在情况做了3周的动态调查,对分离到的溶血菌的16SrDNA进行ARDRA(Amplified Ribosomal DNA Restriction Analysis)酶切分型,将溶血菌分为不同类型,最后利用ERIC—PCR指纹图谱技术对不同类型的溶血菌进行菌株水平的鉴定。结果17例个体中发现5例个体能检测到溶血菌,其中4例个体(A~D)只有1次样品检测到溶血菌,而个体E在3周的5次采样中均能检测到溶血菌。根据ARDRA酶切图谱将溶血菌分为2种类型,Ⅰ型16SrDNA全长测序后与蜡状芽胞杆菌(Bacillus cereus ATCC 10987)序列同源性达99%,Ⅱ型与大肠埃希菌菌(Escherichia coli CFT 073)的16SrDNA序列同源性达99%。结论 在健康个体肠道内也有溶血菌的存在,且溶血菌的存在可能与机体的疲劳程度和饮食情况有关。  相似文献   

8.
哈维氏弧菌(V.harveyi)的VHH溶血素是对海水养殖鱼类的潜在致病因子。哈维氏弧菌的VHH溶血素基因与副溶血弧菌(V.parahaemolyticus)的TLH热不稳定性溶血素基因具有高度相似性,其氨基酸序列的相似性达到85.6 %。根据哈维氏弧菌vhhA溶血素基因序列,合成一个地高辛标记的VHH基因探针,利用其进行Southern Blot ,检测VHH溶血素基因在57株弧菌(包括26株国际标准菌株,20株哈维氏弧菌,11株副溶血弧菌)中的分布情况。结果显示,VHH基因探针与13株弧菌标准菌株有强杂交信号,包括2株溶藻胶弧菌(V.alginolyticus) ,2株哈维氏弧菌以及1株霍氏格里蒙菌(Grimontia hollisae) ,坎贝氏弧菌(V.campbellii) ,辛辛那提弧菌(V.cincinatiensis) ,费氏弧菌(V.fischeri) ,拟态弧菌(V.mimicus) ,飘浮弧菌(V.natriegens) ,副溶血弧菌,解蛋白弧菌(V.proteolyticus)和火神弧菌(V.logei)。与6株弧菌标准菌株有弱杂交信号,包括鳗弧菌(V.anguillarum) ,河口弧菌(V.aestuarianus) ,美人鱼发光杆菌(Photobacterium damselae subsp.damselae) ,河弧菌(V.fluvialis) ,弗尼斯弧菌(V.furnissii)和创伤弧菌(V.vulnificus) ,而另外7株弧菌标准菌株中无杂交信号。所有的哈维氏弧菌菌株至少含有一条杂交带,其中菌株VIB645 , VIB 648和SF-1分别含有2条杂交带。11株副溶血弧菌中均含有一条杂交带。上述数据表明,vhh/tlh溶血素基因广泛分布于弧菌中,尤其是哈维氏弧菌相关菌株和费氏弧菌相关菌株中。另外对鳗弧菌VIB 72 ,坎贝氏弧菌VIB 285 ,飘浮弧菌VIB 299和哈维氏弧菌VIB 647的vhh/tlh溶血素基因进行克隆并测序,其氨基酸序列与VHH溶血素和TLH溶血素氨基酸序列的同源性分别为67 %~99 %和69 %~91 %。对vhh/tlh溶血素基因在弧菌中的分布研究,将有助于进一步确定这类溶血素基因在病原弧菌致病性中的作用。  相似文献   

9.
磷脂酸和溶血磷脂酸的生理功能   总被引:3,自引:0,他引:3  
磷脂酸(phosphatidic acid, PA)和溶血磷脂酸(lysophosphatidic acid,LPA)是细胞内和细胞外信号转导的重要磷脂信号分子.它们主要通过磷脂酶D和磷脂酶C两条途径产生,并且PA在磷脂酶A2的催化下可水解生成LPA.越来越多证据表明,PA和LPA在细胞诸多生理功能中起重要作用.本文主要介绍PA和LPA的生理功能及作用机制的研究进展.  相似文献   

10.
2007~2008年间, 我们调查了浙江沿海地区海产品和养殖环境中副溶血弧菌的污染状况, 并分析了不同来源副溶血弧菌中主要毒力相关基因tdh、trh、ureC和T3SS2(vscC2、vcrD2)的分布特征及溶血表型与尿素酶表型。结果显示, 566份样品中共分离到395株副溶血弧菌, 检出率高达70%, 毒力相关基因分析结果发现, tdh基因阳性率为10.1%, trh与ureC基因阳性率分别为 20.0%与 11.1%, 40株tdh+菌中组成T3SS2的vscC2基因阳性率为32.5%, 其中38株tdh+菌的神奈川试验亦呈阳性; 但在44株trh+-ureC+菌株中, 尿素酶表型阳性只有6株。试验表明, 浙江沿海地区海产品及其养殖环境中副溶血弧菌污染状况比较严重, 且有相当比例的菌株携带毒力或疑似毒力基因。研究结果为深入探索副溶血弧菌的致病性、基因结构与功能(或表型)及其分子演化提供基础。  相似文献   

11.
Autotaxin (ATX), or nucleotide pyrophosphatase/phosphodiesterase 2 (NPP2), is an exo-enzyme originally identified as a tumor cell autocrine motility factor. ATX is unique among the NPPs in that it primarily functions as a lysophospholipase D, converting lysophosphatidylcholine into the lipid mediator lysophosphatidic acid (LPA). LPA acts on specific G protein-coupled receptors to elicit a wide range of cellular responses, ranging from cell proliferation and migration to neurite remodeling and cytokine production. While LPA signaling has been studied extensively over the last decade, we are only now beginning to explore the properties and biological importance of ATX as the major LPA-producing phospholipase. In this review, we highlight recent advances in our understanding of the ATX-LPA axis, giving first an update on LPA action and then focusing on ATX, in particular its regulation, its link to cancer and its vital role in vascular development.  相似文献   

12.
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidate (LPA), which signals through six G-protein coupled receptors (GPCRs). Signaling through LPA is terminated by its degradation by a family of three lipid phosphate phosphatases (LPPs). LPP1 also attenuates signaling downstream of the activation of LPA receptors and some other GPCRs. The ATX-LPA axis mediates a plethora of activities such as cell proliferation, survival, migration, angiogenesis and inflammation, which perform an important role in facilitating wound healing. This wound healing response is hijacked by cancers where there is decreased expression of LPP1 and LPP3 and increased expression of ATX. This maladaptive regulation of LPA signaling also causes chronic inflammation, which has been recognized as one of the hallmarks in cancer. The increased LPA signaling promotes cell survival and migration and attenuates apoptosis, which stimulates tumor growth and metastasis. The wound healing functions of increased LPA signaling also protect cancer cells from effects of chemotherapy and radiotherapy. In this review, we will summarize knowledge of the ATX-LPA axis and its role in the development of resistance to chemotherapy and radiotherapy. We will also offer insights for developing strategies of targeting ATX-LPA axis as a novel part of cancer treatment. This article is part of a Special Issue entitled Lysophospholipids and their receptors: New data and new insights into their function edited by Susan Smyth, Viswanathan Natarajan and Colleen McMullen.  相似文献   

13.
Autotaxin (ATX) or nucleotide pyrophosphatase/phosphodiesterase 2 (NPP2) is an NPP family member that promotes tumor cell motility, experimental metastasis, and angiogenesis. ATX primarily functions as a lysophospholipase D, generating the lipid mediator lysophosphatidic acid (LPA) from lysophosphatidylcholine. ATX uses a single catalytic site for the hydrolysis of both lipid and non-lipid phosphodiesters, but its regulation is not well understood. Using a new fluorescence resonance energy transfer-based phosphodiesterase sensor that reports ATX activity with high sensitivity, we show here that ATX is potently and specifically inhibited by LPA and sphingosine 1-phosphate (S1P) in a mixed-type manner (Ki approximately 10(-7) M). The homologous ecto-phosphodiesterase NPP1, which lacks lysophospholipase D activity, is insensitive to LPA and S1P. Our results suggest that, by repressing ATX activity, LPA can regulate its own biosynthesis in the extracellular environment, and they reveal a novel role for S1P as an inhibitor of ATX, in addition to its well established role as a receptor ligand.  相似文献   

14.
Lysophosphatidic acid (LPA, 1- or 2-acyl-sn-glycerol 3-phosphate) mediates a plethora of physiological and pathological activities via interactions with a series of high affinity G protein-coupled receptors (GPCR). Both LPA receptor family members and autotaxin (ATX/LysoPLD), the primary LPA-producing enzyme, are aberrantly expressed in many human breast cancers and several other cancer lineages. Using transgenic mice expressing either an LPA receptor or ATX, we recently demonstrated that the ATX-LPA receptor axis plays a causal role in breast tumorigenesis and cancerrelated inflammation, further validating the ATX-LPA receptor axis as a rich therapeutic target in cancer.  相似文献   

15.
Recent studies have established that autotaxin (ATX), also known as phosphodiesterase Ialpha/autotaxin (PD-Ialpha/ATX) or (ecto)nucleotide pyrophosphatase/phosphodiesterase 2 [(E)NPP2], represents a multi-functional and multi-modular protein. ATX was initially thought to function exclusively as a phosphodiesterase/pyrophosphatase. However, it has become apparent that this enzymatically active site, which is ultimately responsible for ATX's originally discovered property of tumor cell motility stimulation, mediates the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA). In addition, a separate functionally active domain, here referred to as the Modulator of Oligodendrocyte Remodeling and Focal adhesion Organization (MORFO) domain, was discovered in studies analyzing the role of ATX during the differentiation of myelinating cells of the central nervous system (CNS), namely oligodendrocytes. This novel domain was found to mediate anti-adhesive, i.e. matricellular, properties and to promote morphological maturation of oligodendrocytes. In this review, we summarize our current understanding of ATX's structure-function domains and discuss their contribution to the presently known main functional roles of ATX.  相似文献   

16.
NSun2 is an RNA methyltransferase introducing 5-methylcytosine into tRNAs, mRNAs, and noncoding RNAs, thereby influencing the levels or function of these RNAs. Autotaxin (ATX) is a secreted glycoprotein and is recognized as a key factor in converting lysophosphatidylcholine into lysophosphatidic acid (LPA). The ATX-LPA axis exerts multiple biological effects in cell survival, migration, proliferation, and differentiation. Here, we show that NSun2 is involved in the regulation of cell migration through methylating ATX mRNA. In the human glioma cell line U87, knockdown of NSun2 decreased ATX protein levels, whereas overexpression of NSun2 elevated ATX protein levels. However, neither overexpression nor knockdown of NSun2 altered ATX mRNA levels. Further studies revealed that NSun2 methylated the 3′-UTR of ATX mRNA at cytosine 2756 in vitro and in vivo. Methylation by NSun2 enhanced ATX mRNA translation. In addition, NSun2-mediated 5-methylcytosine methylation promoted the export of ATX mRNA from nucleus to cytoplasm in an ALYREF-dependent manner. Knockdown of NSun2 suppressed the migration of U87 cells, which was rescued by the addition of LPA. In summary, we identify NSun2-mediated methylation of ATX mRNA as a novel mechanism in the regulation of ATX.  相似文献   

17.

Background  

Autotaxin (ATX) possesses lysophospholipase D (lyso PLD) activity, which converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation and tumor progression. Osteopontin (OPN) is an important chemokine involved in the survival, proliferation, migration, invasion and metastasis of gastric cancer cells. The focus of the present study was to investigate the relationship between the ATX-LPA axis and OPN.  相似文献   

18.
Autotaxin (ATX, NPP-2) catalyzes the conversion of lysophosphatidyl choline (LPC) to lysophosphatidic acid (LPA), a mitogenic cell survival factor that stimulates cell motility. The high expression of both ATX and receptors for LPA in numerous tumor cell types has produced substantial interest in exploring ATX as an anticancer chemotherapeutic target. ATX inhibitors reported to date are analogs of LPA, a phospholipid, and are more hydrophobic than is typical of orally bioavailable drugs. This study applied both structure-based and ligand-based virtual screening techniques with hit rates of 20% and 37%, respectively, to identify a promising set of non-lipid, drug-like ATX inhibitors. Structure-based virtual screening necessitated development of a homology model of the ATX catalytic domain due to the lack of structural information on any mammalian NPP family member. This model provided insight into the interactions necessary for ATX inhibition, and produced a suitably diverse training set for the development and application of binary QSAR models for virtual screening. The most efficacious compound identified in this study was able to completely inhibit ATX-catalyzed hydrolysis of 1 microM FS-3 (a synthetic, fluorescent LPC analog) at a 10 microM concentration.  相似文献   

19.
Tumor cell migration, invasion, and angiogenesis are important determinants of tumor aggressiveness, and these traits have been associated with the motility stimulating protein autotaxin (ATX). This protein is a member of the ectonucleotide pyrophosphatase and phosphodiesterase family of enzymes, but unlike other members of this group, ATX possesses lysophospholipase D activity. This enzymatic activity hydrolyzes lysophosphatidylcholine to generate the potent tumor growth factor and motogen lysophosphatidic acid (LPA). In the current study, we show a link between ATX expression, LPA, and vascular endothelial growth factor (VEGF) signaling in ovarian cancer cell lines. Exogenous addition of VEGF-A to cultured cells induces ATX expression and secretion, resulting in increased extracellular LPA production. This elevated LPA, acting through LPA(4), modulates VEGF responsiveness by inducing VEGF receptor (VEGFR)-2 expression. Down-regulation of ATX secretion in SKOV3 cells using antisense morpholino oligomers significantly attenuates cell motility responses to VEGF, ATX, LPA, and lysophosphatidylcholine. These effects are accompanied by decreased LPA(4) and VEGFR2 expression as well as by increased release of soluble VEGFR1. Because LPA was previously shown to increase VEGF expression in ovarian cancer, our data suggest a positive feedback loop involving VEGF, ATX, and its product LPA that could affect tumor progression in ovarian cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号