首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipids as bioeffectors in the immune system   总被引:2,自引:0,他引:2  
Cabral GA 《Life sciences》2005,77(14):1699-1710
Lipids, in addition to serving as fuel stores and structural components of cell membranes, act as effectors and second messengers in a variety of biological processes including those associated with the immune system. These lipid mediators and regulators differ in structural composition and exert a diverse array of effects on cellular functional activities including those linked to homeostasis, immune responsiveness, and inflammation. They function as intercellular mediators and at the intracellular level act as critical conduits of external stimuli in signal transduction cascades. Lipid derived messengers and their receptors also may interact with other signaling molecules. Exogenous compounds such as cannabinoids share functionally relevant receptor binding domains with those for endogenous lipid signaling ligands and have the potential to alter transductional cascades linked to immune functional activities.  相似文献   

2.
选择性标记法及脂类信号转导途径的检测   总被引:1,自引:0,他引:1  
确定由脂类分子介导的信号转导途径和细胞内某些信使分子的生成及改变是信号转导研究领域中的一个重要组成部分.如确定不同磷脂酶活性的调控及细胞内不同来源的第二信使分子及其他脂类生物活性分子的生成与调节,成为探讨生长因子或其他许多分子的生物效应及其作用机理的重要研究内容.为了增加人们对有关研究工作的了解及在方法上的选择,介绍了研究脂类代谢信号转导中广泛运用的一个基本而重要的方法——选择性标记法,并且以实际研究结果为例,说明如何运用该方法检测不同的信号传递途径和有关信号分子的生成与变化.该法针对性强而灵活,重复性高,能有效地检测某些不同来源的信号传递分子的生成及其变化.此外,对脂类代谢信号转导途径及对该途径的研究在信号转导领域的地位和意义也作了简要的介绍.  相似文献   

3.
Bioactive lipid messengers are formed through phospholipase-mediated cleavage of specific phospholipids from membrane reservoirs. Effectors that activate the synthesis of lipid messengers, include ion channels, neurotransmitters, membrane depolarization, cytokines, and neurotrophic factors. In turn, lipid messengers regulate and interact with multiple pathways, participating in the development, differentiation, function (e.g., long-term potentiation and memory), protection, and repair of cells of the nervous system. Overall, bioactive lipids participate in the regulation of synaptic function and dysfunction. Platelet-activating factor (PAF) and COX-2-synthesized PGE2 modulate synaptic plasticity and memory. Oxidative stress disrupts lipid signaling, fosters lipid peroxidation, and initiates and propagates neurodegeneration. Lipid messengers participate in the interactions among neurons, astrocytes, oligodendrocytes, microglia, cells of the microvasculature, and other cells. A conglomerate of interrelated cells comprises the neurovascular unit. Signaling at the neurovascular unit is clearly altered in the early stages of cerebrovascular disease as well as in neurodegenerations. Here we will provide examples of how signaling by lipids regulates critical events essential for neuronal survival. We will highlight a newly identified, DHA-derived messenger, neuroprotectin D1, which attenuates oxidative stress-induced apoptosis. The specificity and potency of this novel docosanoid (neuroprotectin D1) indicate a potentially important target for therapeutic intervention.  相似文献   

4.
Rod outer segments (ROSs) are specialized light-sensitive organelles in vertebrate photoreceptor cells. Lipids in ROS are of considerable importance, not only in providing an adequate environment for efficient phototransduction, but also in originating the second messengers involved in signal transduction. ROSs have the ability to adapt the sensitivity and speed of their responses to ever-changing conditions of ambient illumination. A major contributor to this adaptation is the light-driven translocation of key signaling proteins into and out of ROS. The present review shows how generation of the second lipid messengers from phosphatidylcholine, phosphatidic acid, and diacylglycerol is modulated by the different illumination states in the vertebrate retina. Findings suggest that the light-induced translocation of phototransduction proteins influences the enzymatic activities of phospholipase D, lipid phosphate phosphatase, diacylglyceride lipase, and diacylglyceride kinase, all of which are responsible for the generation of the second messenger molecules.  相似文献   

5.
Inflammation and inflammatory responses are modulated by a bidirectional communication between the neuroendocrine and immune system. Many lines of research have established the numerous routes by which the immune system and the central nervous system (CNS) communicate. The CNS signals the immune system through hormonal pathways, including the hypothalamic-pituitary-adrenal axis and the hormones of the neuroendocrine stress response, and through neuronal pathways, including the autonomic nervous system. The hypothalamic-pituitary-gonadal axis and sex hormones also have an important immunoregulatory role. The immune system signals the CNS through immune mediators and cytokines that can cross the blood-brain barrier, or signal indirectly through the vagus nerve or second messengers. Neuroendocrine regulation of immune function is essential for survival during stress or infection and to modulate immune responses in inflammatory disease. This review discusses neuroimmune interactions and evidence for the role of such neural immune regulation of inflammation, rather than a discussion of the individual inflammatory mediators, in rheumatoid arthritis.  相似文献   

6.
Glycosphingolipid- and cholesterol-enriched membrane microdomains, called rafts, can be isolated from several mammalian cells, including platelets. These microdomains appear to play a critical role in signal transduction in several hematopoietic cells, but their function in blood platelets remains unknown. Herein, we first characterized the lipid composition, including the fatty acid composition of phospholipids, of human platelet rafts. Then their role in platelet activation process was investigated. Interestingly, thrombin stimulation led to morphological changes of rafts correlating with the production of lipid second messengers in these microdomains. Indeed, we could demonstrate for the first time that a large part of the stimulation-dependent production of phosphatidic acid and phosphoinositide 3-kinase products was concentrated in rafts. Moreover, cholesterol depletion with methyl-beta-cyclodextrin disrupted platelet rafts, dramatically decreased the agonist-dependent production of these lipid signaling molecules, and impaired platelet secretion and aggregation. Cholesterol repletion restored the physiological platelet responses. Altogether our data indicate that rafts are highly dynamic platelet membrane structures involved in critical signaling mechanisms linked to the production of lipid second messengers. The demonstration of phosphatidylinositol 3,4,5-trisphosphate production in rafts may have general implications for the understanding of the role of this key second messenger found ubiquitously in higher eucaryotic cells.  相似文献   

7.
Synaptic activity promotes the regulated formation of lipid messengers through phospholipase-mediated cleavage of specific phospholipid reservoirs from membranes. Multiple effectors trigger the formation of lipid messengers, including neurotransmitters, membrane depolarization, ion channels, cytokines, and neurotrophic factors. Lipid messengers in turn modulate and interact with other signaling cascades, contributing to the development, differentiation, function (e.g., long-term potentiation [LTP] and memory), protection, and repair of cells in the nervous system. These relationships with other signaling cascades remain largely to be investigated. Oxidative stress disrupts lipid signaling, enhances lipid peroxidation, and initiates and propagates neurodegeneration. There is growing evidence that lipid messengers participate in the extensive interactions among neurons, astrocytes, oligodendrocytes, microglia, cells of the microvasculature, and other cells. This article provides an example of how signaling by lipids regulates critical events essential for neuronal survival and reviews the recent identification of a novel endogenous neuroprotective signaling pathway involving a docosahexaneoic acid-derived mediator.  相似文献   

8.
Abstract

Annexins are physiologically important proteins that play a role in calcium buffering but also influence membrane structure, participate in Ca2+-dependent membrane repair events and in remodelling of the cytoskeleton. Thirty years ago several peptides isolated from lung perfusates, peritoneal leukocytes, neutrophiles and renal cells were proven inhibitory to the activity of phospholipase A2. Those peptides were found to derive from structurally related proteins: annexins AnxA1 and AnxA2. These findings raised the question whether annexins may participate in regulation of the production of lipid second messengers and, therefore, modulate numerous lipid mediated signaling pathways in the cell. Recent advances in the field of annexins made also with the use of knock-out animal models revealed that these proteins are indeed important constituents of specific signaling pathways. In this review we provide evidence supporting the hypothesis that annexins, as membrane-binding proteins and organizers of the membrane lateral heterogeneity, may participate in lipid mediated signaling pathways by affecting the distribution and activity of lipid metabolizing enzymes (most of the reports point to phospholipase A2) and of protein kinases regulating activity of these enzymes. Moreover, some experimental data suggest that annexins may directly interact with lipid metabolizing enzymes and, in a calcium-dependent or independent manner, with some of their substrates and products. On the basis of these observations, many investigators suggest that annexins are capable of linking Ca2+, redox and lipid signaling to coordinate vital cellular responses to the environmental stimuli.  相似文献   

9.
The coordinated and physiological behavior of living cells in an organism critically depends on their ability to interact with surrounding cells and with the extracellular space. For this, cells have to interpret incoming stimuli, correctly process the signals, and produce meaningful responses. A major part of such signaling mechanisms is the translation of incoming stimuli into intracellularly understandable signals, usually represented by second messengers or second-messenger systems. Two key second messengers, namely the calcium ion and signaling lipids, albeit extremely different in nature, play an important and often synergistic role in such signaling cascades. In this report, we will shed some light on an entire family of protein kinases, the protein kinases C, that are perfectly designed to exactly decode these two second messengers in all of their properties and convey the signaling content to downstream processes within the cell.Once generated, second messengers relay their information content in a plethora of properties, including time, quantity (i.e., concentration), space (i.e., subcellular distribution), and interestingly into any combination of these three characteristics. Nevertheless, such information is meaningless for the cell unless it has a toolkit of read-out systems that can actually interpret such second-messenger properties and relate them further downstream into complex signaling networks, or directly to effector systems. An important system is the family of protein kinase Cs (PKCs) that can read-out lipid signals alone, or combine the ability to read-out simultaneous lipid and Ca2+ signals. A common denominator of all PKCs is the property to convey signals downstream by phosphorylation of additional signaling partners or effector proteins. We will briefly introduce the PKC subfamilies with particular emphasis on their signaling ability, discuss the important sensing domains, and their properties, before concentrating on sensing details of the subfamily of conventional PKCs and their role in signal integration in greater depth.  相似文献   

10.
Membrane lipids as signaling molecules   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Membrane lipids play important roles in signaling reactions. They are involved in most if not all cellular signaling cascades and in a wide variety of tissue and cell types. The purpose of this review is to highlight major pathways of signaling originating in membrane lipids. Details of lipid metabolism, and its relation to protein function, will thus advance understanding of the role of lipids in health and disease. RECENT FINDINGS: Major classes of lipids including glycerophospholipids, their metabolites (eicosanoids, endocannabinoids), and sphingolipids have recently generated interest in the field of signal transduction. These lipids are tightly regulated and have an impact on various physiological functions. Importantly, aberrant lipid metabolism often leads to onset of pathology, and thus the precise balance of signaling lipids and their effectors can serve as biomarkers. SUMMARY: Membrane lipids form precursors for second messengers and functional assembly matrices on membrane domains during cellular stimulation. Many of these modifications are rapid reactions at lipid headgroups. Metabolism of the fatty acyl portion of membrane lipids leads to the generation of a bewildering complexity of lipid mediators with extended effects in space and time.  相似文献   

11.
Mammalian soluble epoxide hydrolase (sEH) converts epoxides to their corresponding diols through the addition of a water molecule. sEH readily hydrolyzes lipid signaling molecules, including the epoxyeicosatrienoic acids (EETs), epoxidized lipids produced from arachidonic acid by the action of cytochrome p450s. Through its metabolism of the EETs and other lipid mediators, sEH contributes to the regulation of vascular tone, nociception, angiogenesis and the inflammatory response. Because of its central physiological role in disease states such as cardiac hypertrophy, diabetes, hypertension, and pain sEH is being investigated as a therapeutic target. This review begins with a brief introduction to sEH protein structure and function. sEH evolution and gene structure are then discussed before human small nucleotide polymorphisms and mammalian gene expression are described in the context of several disease models. The review ends with an overview of studies that have employed the sEH knockout mouse model.  相似文献   

12.
Second messengers are small rapidly diffusing molecules or ions that relay signals between receptors and effector proteins to produce a physiological effect. Lipid messengers constitute one of the four major classes of second messengers. The hydrolysis of two main classes of lipids, glycerophospholipids and sphingolipids, generate parallel profiles of lipid second messengers: phosphatidic acid (PA), diacylglycerol (DAG), and lysophosphatidic acid versus ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate, respectively. In this review, we examine the mechanisms by which these lipid second messengers modulate aldosterone production at multiple levels. Aldosterone is a mineralocorticoid hormone responsible for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis. Primary aldosteronism is a frequent endocrine cause of secondary hypertension. A thorough understanding of the signaling events regulating aldosterone biosynthesis may lead to the identification of novel therapeutic targets. The cumulative evidence in this literature emphasizes the critical roles of PA, DAG, and sphingolipid metabolites in aldosterone synthesis and secretion. However, it also highlights the gaps in our knowledge, such as the preference for phospholipase D-generated PA or DAG, as well as the need for further investigation to elucidate the precise mechanisms by which these lipid second messengers regulate optimal aldosterone production.  相似文献   

13.
Prostaglandins are ubiquitous lipid mediators that play pivotal roles in cardiovascular homeostasis, reproduction, and inflammation, as well as in many important cellular processes including gene expression and cell proliferation. The mechanism of action of these lipid messengers is thought to be primarily dependent on their interaction with specific cell surface receptors that belong to the heptahelical transmembrane spanning G protein-coupled receptor superfamily. Accumulating evidence suggests that these receptors may co-localize at the cell nucleus where they can modulate gene expression through a series of biochemical events. In this context, we have recently demonstrated that prostaglandin E2-EP3 receptors display an atypical nuclear compartmentalization in cerebral microvascular endothelial cells. Stimulation of these nuclear EP3 receptors leads to an increase of eNOS RNA in a cell-free isolated nuclear system. This review will emphasize these findings and describe how nuclear prostaglandin receptors, notably EP3 receptors, may affect gene expression, specifically of eNOS, by identifying putative transducing elements located within this organelle. The potential sources of lipid ligand activators for these intracellular sites will also be addressed. The expressional control of G-protein-coupled receptors located at the perinuclear envelope constitutes a novel and distinctive mode of gene regulation.  相似文献   

14.
15.
The transforming growth factor-β (TGF-β) superfamily is a multifunctional, contextually acting family of cytokines that participate in the regulation of development, disease and tissue repair in the nervous system. The TGF-β family is composed of several members, including TGF-βs, bone morphogenetic proteins (BMPs) and activins. In this review, we discuss recent findings that suggest TGF-β function as important pleiotropic modulators of nociceptive processing both physiologically and under pathological painful conditions. The strategy of increasing TGF-β signaling by deleting “BMP and activin membrane-bound inhibitor” (BAMBI), a TGF-β pseudoreceptor, has demonstrated the inhibitory role of TGF-β signaling pathways in normal nociception and in inflammatory and neuropathic pain models. In particular, strong evidence suggests that TGF-β1 is a relevant mediator of nociception and has protective effects against the development of chronic neuropathic pain by inhibiting the neuroimmune responses of neurons and glia and promoting the expression of endogenous opioids within the spinal cord. In the peripheral nervous system, activins and BMPs function as target-derived differentiation factors that determine and maintain the phenotypic identity and circuit assembly of peptidergic nociceptors. In this context, activin is involved in the complex events of neuroinflammation that modulate the expression of pain during wound healing. These findings have provided new insights into the physiopathology of nociception. Moreover, specific members of the TGF-β family and their signaling effectors and modulator molecules may be promising molecular targets for novel therapeutic agents for pain management.  相似文献   

16.
Lipid signaling   总被引:5,自引:0,他引:5  
Various lipids are involved in mediating plant growth, development and responses to biotic and abiotic cues, and their production is regulated by lipid-signaling enzymes. Lipid-hydrolyzing enzymes play a pivotal role both in the production of lipid messengers and in other processes, such as cytoskeletal rearrangement, membrane trafficking, and degradation. Studies on the downstream targets and modes of action of lipid signals in plants are still in their early stages but distinguishing features of plant lipid-based signaling are being recognized. Phospholipase D enzymes and phosphatidic acid may play a broader role in lipid signaling in plants than in other systems.  相似文献   

17.
Sphingolipid second messengers, such as ceramide and sphingosine-1-phosphate, signal proliferation, differentiation and death in mammalian cells. The object of this article is to highlight the potential impact of this new information on the study of female and male gonadal development and function. Since the generation of competent gametes by both sexes is precisely regulated by maturational (meiotic) and apoptotic (quality-control) checkpoints, it is proposed that lipid signaling molecules serve as important contributors to the regulation of gametogenesis. The function of sphingolipid molecules in mediating stress- or damage-induced apoptosis in the germ line, an event most-likely associated with impaired gonadal function and infertility, is also discussed. Collectively, these areas represent exciting research directions that may ultimately lead to the development of new therapeutics to coordinate and control fertility in males and females.  相似文献   

18.
Photouncaging of second messengers has been successfully employed to gain mechanistic insight of cellular signaling pathways. One of the most enigmatic processes of ion channel regulation is lipid recognition and lipid-gating of TRPC channels, which represents pivotal mechanisms of cellular Ca~(2+) homeostasis. Recently, optopharmacological tools including caged lipid mediators became available, enabling an unprecedented level of temporal and spatial control of the activating lipid species within a cellular environment. Here we tested a commonly used caged ligand approach for suitability to investigate TRPC signaling at the level of membrane conductance and cellular Ca~(2+) handling. We report a specific photouncaging artifact that is triggered by the cage structure coumarin at UV illumination. Electrophysiological characterization identified a light-dependent membrane effect of coumarin. UV light(340 nm) as used for photouncaging, initiated a membrane conductance specifically in the presence of coumarin as low as 30 μmol L~(-1) concentrations. This conductance masked the TRPC3 conductance evoked by photouncaging, while TRPC-mediated cellular Ca~(2+) responses were largely preserved. The observed light-induced membrane effects of the released caging moiety may well interfere with certain cellular functions, and prompt caution in using coumarin-caged second messengers in cellular studies.  相似文献   

19.
20.
The diversity of lipid species in biological membranes testifies to the multiple roles of these molecules as structural units, precursors to second messengers, as scaffolding units that impose spatial and temporal regulation on assembly of proteins, and as regulators of the catalytic activities of proteins. Such diverse lipid functions must be appropriately coordinated so that these can be specifically and appropriately coupled to dedicated biological processes. Evidence from multiple sources is building towards a concept where Sec14-like PITPs are specific components of lipid metabolic nanoreactors and, in this capacity, help impose a functional specification of lipid signaling pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号