首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
3.
4.
5.
6.
7.
The regulatory control mechanisms of lipid and fatty acid metabolism were investigated in Atlantic salmon. We identified sterol regulatory element binding protein (SREBP) genes in salmon and characterised their response, and the response of potential target and other regulatory genes including liver X receptor (LXR), to cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA) in the salmon established cell line, SHK-1. Two cDNAs for SREBPs homologous to mammalian SREBP-1 and SREBP-2 were characterised. We identified three groups of genes whose expression responded differently to the treatments. One group of genes, including cholesterol biosynthetic genes, showed increased expression in response to lipid depletion but supplementary cholesterol or LC-PUFA had no further effect. The expression of a second group of genes belonging to fatty acid biosynthetic pathways, included fatty acid synthase, Δ6 and Δ5 fatty acyl desaturases, also increased after lipid depletion but this was negated by cholesterol or by LC-PUFA supplementation. The expression of a third group of genes including acyl-CoA oxidase, HMG-CoA reductase and Elovl5 elongase was increased by cholesterol treatment but was not affected by lipid depletion or by LC-PUFA. This same pattern of expression was also shown by liver X receptor (LXR), indicating that acyl-CoA oxidase, HMG-CoA reductase and Elovl5 are possible direct targets of LXR. This suggests that salmon Elovl5 may be regulated differently from mammalian Elovl5, which is an indirect target of LXR, responding to LXR-dependent increases in SREBP-1.  相似文献   

8.
9.
Delta6 desaturase (D6D), the rate-limiting enzyme for highly unsaturated fatty acid (HUFA) synthesis, is induced by essential fatty acid-deficient diets. Sterol regulatory element-binding protein-1c (SREBP-1c) in part mediates this induction. Paradoxically, D6D is also induced by ligands of peroxisome proliferator-activated receptor alpha (PPARalpha). Here, we report a novel physiological role of PPARalpha in the induction of genes specific for HUFA synthesis by essential fatty acid-deficient diets. D6D mRNA induction by essential fatty acid-deficient diets in wild-type mice was diminished in PPARalpha-null mice. This impaired D6D induction in PPARalpha-null mice was not attributable to feedback suppression by tissue HUFAs because PPARalpha-null mice had lower HUFAs in liver phospholipids than did wild-type mice. Furthermore, PPARalpha-responsive genes were induced in wild-type mice under essential fatty acid deficiency, suggesting the generation of endogenous PPARalpha ligand(s). Contrary to genes for HUFA synthesis, the induction of other lipogenic genes under essential fatty acid deficiency was higher in PPARalpha-null mice than in wild-type mice even though mature SREBP-1c protein did not differ between the genotypes. The expression of PPARgamma was markedly increased in PPARalpha-null mice and might have contributed to the induction of genes for de novo lipogenesis. Our study suggests that PPARalpha, together with SREBP-1c, senses HUFA status and confers pathway-specific induction of HUFA synthesis by essential fatty acid-deficient diets.  相似文献   

10.
11.
12.
Hepatic fatty acid elongase-5 (Elovl-5) plays an important role in long chain monounsaturated and polyunsaturated fatty acid synthesis. Elovl-5 activity is regulated during development, by diet, hormones, and drugs, and in chronic disease. This report examines the impact of elevated Elovl-5 activity on hepatic function. Adenovirus-mediated induction of Elovl5 activity in livers of C57BL/6 mice increased hepatic and plasma levels of dihomo-gamma-linolenic acid (20:3,n-6) while suppressing hepatic arachidonic acid (20:4,n-6) and docosahexaenoic acid (22:6,n-3) content. The fasting-refeeding response of peroxisome proliferator-activated receptor alpha-regulated genes was attenuated in mice with elevated Elovl5 activity. In contrast, the fasting-refeeding response of hepatic sterol-regulatory element binding protein-1 (SREBP-1)-regulated and carbohydrate-regulatory element binding protein/Max-like factor X-regulated genes, Akt and glycogen synthase kinase (Gsk)-3beta phosphorylation, and the accumulation of hepatic glycogen content and nuclear SREBP-1 were not impaired by elevated Elovl5 activity. Hepatic triglyceride content and the phosphorylation of AMP-activated kinase alpha and Jun kinase 1/2 were reduced by elevated Elovl5 activity. Hepatic phosphoenolpyruvate carboxykinase expression was suppressed, while hepatic glycogen content and phosphorylated Gsk-3beta were significantly increased, in livers of fasted mice with increased Elovl5 activity. As such, hepatic Elovl5 activity may affect hepatic glucose production during fasting. In summary, Elovl5-induced changes in hepatic fatty acid content affect multiple pathways regulating hepatic lipid and carbohydrate composition.  相似文献   

13.
Vascular calcification is recognized as an independent predictor of cardiovascular mortality, particularly in subjects with chronic kidney disease. However, the pathways by which dysregulation of lipid and mineral metabolism simultaneously occur in this particular population remain unclear. We have shown that activation of the farnesoid X receptor (FXR) blocks mineralization of bovine calcifying vascular cells (CVCs) and in ApoE knock-out mice with 5/6 nephrectomy. In contrast to FXR, this study showed that liver X receptor (LXR) activation by LXR agonists and adenovirus-mediated LXR overexpression by VP16-LXRα and VP16-LXRβ accelerated mineralization of CVCs. Conversely, LXR inhibition by dominant negative (DN) forms of LXRα and LXRβ reduced calcium content in CVCs. The regulation of mineralization by FXR and LXR agonists was highly correlated with changes in lipid accumulation, fatty acid synthesis, and the expression of sterol regulatory element binding protein-1 (SREBP-1). The rate of lipogenesis in CVCs through the SREBP-1c dependent pathway was reduced by FXR activation, but increased by LXR activation. SREBP-1c overexpression augmented mineralization in CVCs, whereas SREBP-1c DN inhibited alkaline phosphatase activity and mineralization induced by LXR agonists. LXR and SREBP-1c activations increased, whereas FXR activation decreased, saturated and monounsaturated fatty acids derived from lipogenesis. In addition, we found that stearate markedly promoted mineralization of CVCs as compared with other fatty acids. Furthermore, inhibition of either acetyl-CoA carboxylase or acyl-CoA synthetase reduced mineralization of CVCs, whereas inhibition of stearoyl-CoA desaturase induced mineralization. Therefore, a stearate metabolite derived from lipogenesis might be a risk factor for the development of vascular calcification.  相似文献   

14.
15.
Enhanced production of monounsaturated fatty acids (FA) derived from carbohydrate-enriched diets has been implicated in the development of obesity and insulin resistance. The FA elongases Elovl-5 and Elovl-6 are regulated by nutrient and hormone status, and have been shown using intact yeast and mammalian microsome fractions to be involved in the synthesis of monounsaturated FAs (MUFA). Herein, targeted knockdown and overexpression of Elovl-5 or Elovl-6 was used to determine their roles in de novo synthesis of specific MUFA species in mammalian cells. Treatment of rat insulinoma (INS)-1 cells with elevated glucose increased de novo FA synthesis and the ratio of MUFAs to saturated FAs. Elovl-5 knockdown decreased elongation of 16:1,n-7. Elovl-5 overexpression increased synthesis of 18:1,n-7; however, this increase was dependent on stearoyl-CoA desaturase–driven 16:1,n-7 availability. Knockdown of Elovl-6 decreased elongation of 16:0 and 16:1,n-7, resulting in accumulation of 16:1,n-7. Elovl-6 overexpression preferentially drove synthesis of 16:0 elongation products 18:0 and 18:1,n-9 but not 18:1,n-7. These findings demonstrate that coordinated induction of FA elongase and desaturase activity is required for balanced synthesis of specific n-7 versus n-9 MUFA species. Given the relative abundance of 16:0 to 16:1,n-7 and the specificity of Elovl-6 for 16:0, Elovl-6 is a major elongase for 18:1,n-9 production.  相似文献   

16.
In mammalian cells, essential polyunsaturated fatty acids (PUFAs) are converted to longer PUFAs by alternating steps of elongation and desaturation. In contrast to other PUFA-rich tissues, the testis is continuously drained of these fatty acids as spermatozoa are transported to the epididymis. Alteration of the germ cell lipid profile from spermatogonia to condensing spermatids and mature spermatozoa has been described, but the male gonadal gene expression of the desaturases, responsible for the PUFA-metabolism, is still not established. The focus of this study was to characterize the expression and regulation of stearoyl-CoA desaturase 1 (SCD1), stearoyl-CoA desaturase 2 (SCD2), and Delta5- and Delta6-desaturase in rat testis. Desaturase gene expression was detected in testis, epididymis, and separated cells from seminiferous tubulus using Northern blot analysis. For the first time, SCD1 and SCD2 expression is demonstrated in rat testis and epididymis, both SCDs are expressed in epididymis, while testis mainly contains SCD2. Examination of the testicular distribution of Delta5- and Delta6-desaturase and SCD1 and SCD2 shows that all four desaturases seem to be localized in the Sertoli cells, with far lower expression in germ cells. In light of earlier published results showing that germ cells are richer in PUFAs than Sertoli cells, this strengthens the hypothesis of a lipid transport from the Sertoli cells to the germ cells. As opposed to what is shown in liver, Delta5- and Delta6-desaturase mRNA levels in Sertoli cells are up-regulated by dexamethasone. Furthermore, dexamethasone induces SCD2 mRNA. Insulin also up-regulates these three genes in the Sertoli cell, while SCD1 mRNA is down-regulated by both insulin and dexamethasone. Delta5- and Delta6-desaturase, SCD1, and SCD2 are all up-regulated by FSH. A similar up-regulation of the desaturases is observed when treating Sertoli cells with (Bu)2cAMP, indicating that the desaturase up-regulation observed with FSH treatment results from elevated levels of cAMP. Finally, testosterone has no influence on the desaturase gene expression. Thus, FSH seems to be a key regulator of the desaturase expression in the Sertoli cell.  相似文献   

17.
Dietary conjugated linoleic acid (CLA) affects fat deposition and lipid metabolism in mammals, including livestock. To determine CLA effects in Atlantic salmon (Salmo salar), a major farmed fish species, fish were fed for 12 weeks on diets containing fish oil or fish oil with 2% and 4% CLA supplementation. Fatty acid composition of the tissues showed deposition of CLA with accumulation being 2 to 3 fold higher in muscle than in liver. CLA had no effect on feed conversion efficiency or growth of the fish but there was a decreased lipid content and increased protein content after 4% CLA feeding. Thus, the protein:lipid ratio in whole fish was increased in fish fed 4% CLA and triacylglycerol in liver was decreased. Liver beta-oxidation was increased whilst both red muscle beta-oxidation capacity and CPT1 activity was decreased by dietary CLA. Liver highly unsaturated fatty acid (HUFA) biosynthetic capacity was increased and the relative proportion of liver HUFA was marginally increased in salmon fed CLA. CLA had no effect on fatty acid Delta6 desaturase mRNA expression, but fatty acid elongase mRNA was increased in liver and intestine. In addition, the relative compositions of unsaturated and monounsaturated fatty acids changed after CLA feeding. CLA had no effect on PPARalpha or PPARgamma expression in liver or intestine, although PPARbeta2A expression was reduced in liver at 4% CLA feeding. CLA did not affect hepatic malic enzyme activity. Thus, overall, the effect of dietary CLA was to increase beta-oxidation in liver, to reduce levels of total body lipid and liver triacylglycerol, and to affect liver fatty acid composition, with increased elongase expression and HUFA biosynthetic capacity.  相似文献   

18.
19.

Background

Mounting evidence points to lipid accumulation in the diseased kidney and its contribution to progression of nephropathy. We recently found heavy lipid accumulation and marked dysregulation of lipid metabolism in the remnant kidneys of rats with chronic renal failure (CRF). Present study sought to determine efficacy of niacin supplementation on renal tissue lipid metabolism in CRF.

Methods

Kidney function, lipid content, and expression of molecules involved in cholesterol and fatty acid metabolism were determined in untreated CRF (5/6 nephrectomized), niacin-treated CRF (50 mg/kg/day in drinking water for 12 weeks) and control rats.

Results

CRF resulted in hypertension, proteinuria, renal tissue lipid accumulation, up-regulation of scavenger receptor A1 (SR-A1), acyl-CoA cholesterol acyltransferase-1 (ACAT1), carbohydrate-responsive element binding protein (ChREBP), fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), liver X receptor (LXR), ATP binding cassette (ABC) A-1, ABCG-1, and SR-B1 and down-regulation of sterol responsive element binding protein-1 (SREBP-1), SREBP-2, HMG-CoA reductase, PPAR-α, fatty acid binding protein (L-FABP), and CPT1A. Niacin therapy attenuated hypertension, proteinuria, and tubulo-interstitial injury, reduced renal tissue lipids, CD36, ChREBP, LXR, ABCA-1, ABCG-1, and SR-B1 abundance and raised PPAR-α and L-FABP.

Conclusions and general significance

Niacin administration improves renal tissue lipid metabolism and renal function and structure in experimental CRF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号