首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Role of Antioxidant Systems in Wheat Genotypes Tolerance to Water Stress   总被引:12,自引:0,他引:12  
The role of plant antioxidant systems in stress tolerance was studied in leaves of three contrasting wheat genotypes. Drought imposed at two different stages after anthesis resulted in an increase in H2O2 accumulation and lipid peroxidation and decrease in ascorbic acid content. Antioxidant enzymes like superoxide dismutase, ascorbate peroxidase and catalase significantly increased under water stress. Drought tolerant genotype C 306 which had highest ascorbate peroxidase and catalase activity and ascorbic acid content also showed lowest H2O2 accumulation and lipid peroxidation (malondialdehyde content) under water stress in comparison to susceptible genotype HD 2329 which showed lowest antioxidant enzyme activity and ascorbic acid content and highest H2O2 content and lipid peroxidation. HD 2285 which is tolerant to high temperature during grain filling period showed intermediate behaviour. Superoxide dismutase activity, however, did not show significant differences among the genotypes under irrigated as well as water stress condition. It seems that H2O2 scavenging systems as represented by ascorbate peroxidase and catalase are more important in imparting tolerance against drought induced oxidative stress than superoxide dismutase alone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We studied the effect of water stress imposed at anthesis and pre-anthesis stages on oxidative stress and antioxidant activity in four wheat cultivars, two hexaploid Triticum aestivum cultivars, drought resistant cv. C 306 and drought susceptible cv. Hira, and two tetraploid cultivars, T. durum cv. A 9-30-1 and T. dicoccum cv. HW 24. Water stress decreased relative water content (RWC), membrane stability index (MSI), and increased H2O2 and malondialdehyde (MDA) contents as well as activity of superoxide dismutase (SOD), catalase (Cat) and peroxidase (POX) in all the genotypes at all the stages. Both the tetraploid cultivars showed higher RWC, MSI and SOD activity, and lower H2O2 and MDA contents under water stress than hexaploid ones. Cat and POX activities were highest in C 306.  相似文献   

3.
The role of plant antioxidant system in water stress tolerance was studied in three contrasting wheat genotypes. Water stress imposed at different stages after anthesis resulted in a general increase in lipid peroxidation (LPO) and decrease in membrane stability index (MSI), and contents of chlorophylls (Chl) and carotenoids (Car). Antioxidant enzymes like glutathione reductase and ascorbate peroxidase significantly increased under water stress. Genotype C 306, which had highest glutathione reductase and ascorbate peroxidase activity, also showed lowest LPO and highest MSI, and Chl and Car contents under water stress in comparison to susceptible genotype HD 2329, which showed lowest antioxidant enzyme activity as well as MSI, Chl and Car contents and highest LPO. HD 2285 which is tolerant to high temperature during grain filling period showed intermediate behaviour. Thus, the relative tolerance of a genotype to water stress as reflected by its comparatively lower LPO and higher MSI, Chl and Car contents is closely associated with its antioxidant enzyme system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
5.
Effects of long-term sodium chloride salinity (100 and 200 mM NaCl; ECe = 6.85 and 12.3 dS m–1) were studied in tolerant (Kharchia 65, KRL 19) and susceptible (HD 2009, HD 2687) wheat genotypes. NaCl decreased relative water content (RWC), chlorophyll content (Chl), membrane stability index (MSI) and ascorbic acid (AA) content, and increased the contents of hydrogen peroxide, thiobarbituric acid reactive substances (TBARS), and activities of superoxide dismutase (SOD), ascorbate peroxidase (APOX) and glutathione reductase (GR). Kharchia 65 showed lowest decline in RWC, Chl, MSI and AA content, lowest increase in H2O2 and TBARS contents and higher increase in SOD and its isozymes, APOX and GR, while HD2687 showed the highest decrease in AA content, highest increase in H2O2 and TBARS contents and smallest increase in activities of antioxidant enzymes. KRL 19 and HD 2009 showed intermediate response both in terms of oxidative stress and antioxidant activity.  相似文献   

6.
The mechanism of growth amelioration in salt-stressed pennyroyal (Mentha pulegium L.) was investigated by exogenous application of penconazole (PEN). Seven weeks after sowing, seedlings were treated with increasing NaCl concentrations (0, 25, 50, and 75 mM) with or without PEN (15 mg l?1) and were harvested randomly at different times. Results showed that some growth parameters and the relative water content (RWC) decreased under salt stress, while lipid peroxidation, H2O2 content, activities of superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POX; EC 1.11.1.7), polyphenol oxidase (PPO; EC 1.10.3.1), catalase (CAT; EC 1.11.1.6), and ascorbate peroxidase (APX; EC 1.11.1.1) remarkably increased. Exogenous application of PEN increased some growth parameters, RWC, antioxidant enzyme activities, and H2O2 content, but the effects of PEN were more significant under salt stress conditions. PEN treatment also decreased lipid peroxidation. These results suggest that PEN-induced tolerance to salt stress in M. pulegium plants may be related to regulation of antioxidative responses and H2O2 level.  相似文献   

7.
We induced an oxidative stress by means of exogenous hydrogen peroxide in two wheat genotypes, C 306 (tolerant to water stress) and Hira (susceptible to water stress), and investigated oxidative injury and changes in antioxidant enzymes activity. H2O2 treatment caused chlorophyll degradation, lipid peroxidation, decreased membrane stability and activity of nitrate reductase. Hydrogen peroxide increased the activity of antioxidant enzymes, glutathione reductase and catalase. These effects increased with increasing H2O2 concentrations. However, no change was observed in the activity of superoxide dismutase and proline accumulation.  相似文献   

8.
Two wheat (Triticum aestivum L.) genotypes differing in their sensitivity to water deficit (stress tolerant - C306 and stress susceptible - HD2329) were subjected to osmotic stress for 7 d using polyethylene glycol (PEG-6000; osmotic potential –1.0 MPa), at initial vegetative growth. The plants were either supplemented with 1 mM CaCl2 (Ca2+) alone or along with verapamil (VP; calcium channel blocker) to investigate the involvement of calcium in governing osmoregulation. Relative elongation rate (RER), dry matter (DM) production, water potential (w), electrolyte leakage (EL), contents of proline (Pro) and glycine betaine (GB) and activities of -glutamyl kinase (GK) and proline oxidase (PO) in shoots and roots were examined during stress period. C306 showed relatively higher accumulation of Pro while HD2329 accumulated more GB under stress. RER, DM and w were relatively higher in C306 than HD2329. Roots compared to shoots showed lower content of osmolytes but had faster rate of their accumulation. Presence of Ca2+ in the medium increased the activity of GK and decreased that of PO while in the presence of its inhibitor, decrease in activity of both the enzymes was observed. Ca2+ appeared to reduce the damaging effect of stress by elevating the content of Pro and GB, improving the water status and growth of seedlings and minimizing the injury to membranes. The protective effect of Ca2+ was observed to be more in HD2329 than C306.  相似文献   

9.
Wheat (Triticum aestivum L.) plants were subjected to mild water stress during grain filling at milk (early, medium, and late) and dough (early, soft, hard) stages. The grains harvested from stressed plants were subjected to low temperature stress of 10 °C for 24 h in presence or absence of 1 mM CaCl2, and embryos were examined for oxidative injury. The embryos of grains water stressed at milk and soft dough stages showed lowest contents of H2O2 and malondialdehyde and highest membrane stability index, ascorbic acid content, and activities of catalase, ascorbate peroxidase, and superoxide dismutase as compared to control embryos or water-stressed at other stages. Presence of Ca2+ in the medium reduced H2O2 and malondialdehyde content and increased ascorbic acid content, and catalase, ascorbate peroxidase and superoxide dismutase activities.  相似文献   

10.
Pigeonpea [Cajanus cajan (L.) Millsp.] is a waterlogging-sensitive legume crop. We studied the effect of waterlogging stress on hydrogen peroxide (H2O2) content, lipid peroxidation and antioxidant enzyme activities in two pigeonpea genotypes viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). In a pot experiment, waterlogging stress was imposed for 6 days at early vegetative stage (20 days after sowing). Waterlogging treatment significantly increased hydrogen peroxide accumulation and lipid peroxidation, which indicated the extent of oxidative injury posed by stress conditions. Enzyme activities of peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) increased in pigeonpea roots as a consequence of waterlogged conditions, and all the enzyme activities were significantly higher in waterlogged ICPL-84023 than in MAL-18. POX activity was the maximum immediately after imposing stress, therefore, it was suggested to be involved in early scavenging of H2O2, while rest of the enzymes (CAT, APX, SOD and PPO) were more important in late responses to waterlogging. Present study revealed that H2O2 content is directly related to lipid peroxidation leading to oxidative damage during waterlogging in pigeonpea. Higher antioxidant potential in ICPL-84023 as evidenced by enhanced POX, CAT, APX, SOD and PPO activities increased capacity for reactive oxygen species (ROS) scavenging and indicated relationship between waterlogging resistance and antioxidant defense system in pigeonpea.  相似文献   

11.
In the view of physiological role of H2O2, we investigated whether exogenous H2O2 application would affect short-term cold response of tomato and induce acclimation. Pretreatments were performed by immersing roots into 1 mM H2O2 solution for 1 h when transferring seedlings from seedling substrate to soil (acclimated group). Cold stress (3 °C for 16 h) caused significant reduction in relative water content (RWC) of control and non-acclimated (distilled water treated) groups when compared with unstressed plants. H2O2 promoted maintenance of relatively higher RWC under stress. Anthocyanin level in leaves of acclimated plants under cold stress was significantly higher than that of unstressed control and non-acclimated plants. Malondialdehyde (MDA) levels demonstrated low temperature induced oxidative damage to control and non-acclimated plants. MDA remained around unstressed conditions in acclimated plants, which demonstrate that H2O2 acclimation protected tissues against cold induced lipid peroxidation. H2O2 acclimation caused proline accumulation in roots under cold stress. Ascorbate peroxidase (APX) activity in roots of cold stressed and unstressed H2O2 acclimated plants increased when compared with control and non-acclimated plants, with highest increase in roots of acclimated plants under cold stress. CAT levels in roots of acclimated plants also increased, whereas levels remained unchanged in unstressed plants. Endogenous H2O2 levels significantly increased in roots of control and non-acclimated plants under cold stress. On the other hand, H2O2 content in roots of acclimated plants was significantly lower than control and non-acclimated plants under cold stress. The results presented here demonstrated that H2O2 significantly enhanced oxidative stress response by elevating the antioxidant status of tomato.  相似文献   

12.
Comparison of resistance to drought of three bean cultivars   总被引:4,自引:0,他引:4  
The aim of the present work was to evaluate oxidative stress and plant antioxidant system of three contrasting bean (Phaseolus vulgaris L.) genotypes in the response to drought. Drought was imposed 14 d after emergence, by withholding water, until leaf relative water content reached 65 %. Water stress increased lipid peroxidation (LPO), membrane injury index, H2O2 and OH production in leaves of stressed plants. Activities of the antioxidative enzymes superoxide dismutase (SOD) and ascorbate peroxidase (APOX) increased significantly under water stress in all the studied cultivars, while catalase (CAT) increased in cvs. Plovdiv 10 and Prelom, but decreased in cv. Dobrudjanski ran. Furthermore cv. Plovdiv 10 which had the highest APOX and CAT activities also showed the lowest increase in H2O2 and OH production and LPO while cv. Dobrudjanski ran showed the lowest increases (and often the lowest values) in the antioxidant enzyme activities and the highest increases of H2O2 and OH production, and LPO. On the basis of the data obtained we could specify cv. Plovdiv 10 and cv. Prelom as drought tolerant and cv. Dobrudjanski ran as a drought sensitive.  相似文献   

13.
高温胁迫下外源褪黑素对黄瓜幼苗活性氧代谢的影响   总被引:6,自引:3,他引:3  
以黄瓜品种‘津春4号’为试材,用叶面喷施的方法,研究了高温胁迫条件下外源褪黑素(melatonin,MT)对黄瓜幼苗活性氧(ROS)代谢的影响.结果表明:外源MT能显著降低高温胁迫下黄瓜叶片超氧阴离子自由基(O2-.)产生速率、过氧化氢(H2O2)含量、电解质漏渗率(relative electric conductivity, REC)及丙二醛(MDA)含量,增强黄瓜幼苗叶片中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性,提高抗坏血酸(AsA)、谷胱甘肽(GSH)及可溶性蛋白质含量.说明MT预处理能抑制高温胁迫条件下黄瓜幼苗体内ROS的产生,提高抗氧化酶系的活性及抗氧化物质的含量,降低膜质过氧化水平,保护脂膜的完整性,减少电解质的外渗,减轻高温胁迫对幼苗造成的伤害,提高幼苗抗高温胁迫的能力.  相似文献   

14.
The phytotoxic effects of aluminum and the mechanisms of genetically-based Al tolerance have been widely investigated, as reported in many papers and reviews. However, investigations on many Al-sensitive and Al-resistant species demonstrate that Al phytotoxicity and Al-resistance mechanisms are extremely complex phenomena. The objective of the present study was to analyze the effects of aluminum on the activity of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). Also was evaluated the lipid peroxidation, H2O2 content, levels of ascorbic acid (ASA), non-protein thiols (NPSH) and Al content in three genotypes of oat, Avena sativa L. (UFRGS 930598, UFRGS 17, and UFRGS 280). The genotypes were grown in different concentrations of Al ranging from 90 to 555???M for 5?days. The antioxidant system was unable to overcome toxicity resulting in negative effects such as lipid peroxidation and H2O2 content in UFRGS 930598. The results showed that UFRGS 930598 was the most sensitive genotype. UFRGS 17 and UFRGS 280 were more resistant to Al toxicity. These results suggest that UFRGS 17 has mechanisms of external detoxification and UFRGS 280 has mechanisms of internal detoxification. The different behavior of enzymatic and non-enzymatic antioxidants of the genotypes showed that aluminum resistance in UFGRS 17 and UFRGS 280 may be related to oxidative stress.  相似文献   

15.
Wheat (Triticum aestivum L.) cvs. HD 2285 (relatively tolerant) and WH 542 (susceptible) were exposed to ambient and elevated temperature (3–4 °C higher) in open top chambers during post anthesis period. The grain yield components were determined at the time of maturity. In order to elucidate the basis of differential tolerance of these cultivars, the excised developing grains (20 d after anthesis) of ambient grown plants were incubated at 15, 25, 35 and 45 °C for 2 h and then analysed for the activities of soluble starch synthase (SSS), granule bound starch synthase (GBSS), kinetic parameters of SSS and content of heat shock protein (HSP 100). The elevated temperature during grain development significantly decreased grain growth in WH 542 whereas no such decrease was observed in HD 2285. High temperature tolerance of HD 2285 was found to be associated with higher catalytic efficiency (Vmax/Km) of SSS at elevated temperature and higher content of HSP 100.  相似文献   

16.
The effects of aluminum on lipid peroxidation and activities of antioxidative enzymes were investigated in detached rice leaves treated with 0 to 5 mM AlCl3 at pH 4.0 in the light. AlCl3 enhanced the content of malondialdehyde but not the content of H2O2. Superoxide dismutase activity was reduced by AlCl3, while catalase and glutathione reductase activities were increased. Peroxidase and ascorbate peroxidase activities were increased only after prolonged treatment, when toxicity occurred. The results give evidence that Al treatment caused oxidative stress and in turn, it caused lipid peroxidation.  相似文献   

17.
Rehmannia glutinosa seedlings were pretreated with choline chloride (CC) in concentrations of 0, 0.7, 2.1 and 3.5 mM, and then subjected to drought and rewatering treatment to study the effects of CC on the generation of reactive oxygen species (O2, H2O2), lipid peroxidation, proline accumulation, water status and photosynthesis. The results showed that pretreatment with CC alleviated the inhibition of SOD and APX activity caused by drought stress, and therefore, the rate of O2 production and H2O2 concentration were reduced and lipid peroxidation decreased in pretreated plants. CC pretreatment also accelerated accumulation of proline, maintained higher Ψw and RWC, deferred leaf water loss during drought stress and retarded the drop in proline concentration after rewatering. Consequently, drought-induced decreases in Fm/F0, Fv/Fm, ΦPS2, qP, and A and increase in qNP were inhibited and the recovery of photosynthesis after rewatering was quicker in pretreated plants. Although differences in Fv/Fm, ΦPS2 and qP between treatments were not significant, there was a general trend that the effects of CC increased with the rise of its concentrations. The data suggested that 2.1 mM of CC be suitable for alleviating lipid peroxidation, promoting proline accumulation, retarding leaf water loss and improving photosynthesis of R. glutinosa seedlings under drought stress.  相似文献   

18.
Scavenger enzyme activities in subcellular fractions under polyethylene glycol (PEG)-induced water stress in white clover (Trifolium repens L.) were studied. Water stress decreased ascorbic acid (AA) content and catalase (CAT) activity and increased the contents of hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) (measure of lipid peroxidation), and activities of superoxide dismutase (SOD), its various isozymes, ascorbate peroxidase (APOX), and glutathione reductase (GR) in cellular cytosol, chloroplasts, mitochondria, and peroxisomes of Trifolium repens leaves. In both the PEG-treated plants and the control, chloroplastic fractions showed the highest total SOD, APOX, and GR activities, followed by mitochondrial fractions in the case of total SOD and GR activities, whereas cytosolic fractions had the second greatest APOX activity. However, CAT activity was the highest in peroxisomes, followed by the cytosol, mitochondria, and chloroplasts in decreasing order. Although Mn-SOD activity was highest in mitochondrial fractions, residual activity was also observed in cytosolic fractions. Cu/Zn-SOD and Fe-SOD were observed in all subcellular fractions; however, the activities were the highest in chloroplastic fractions for both isoforms. Total Cu/Zn-SOD activity, the sum of activities observed in all fractions, was higher than other SOD isoforms. These results suggest that cytosolic and chloroplastic APOX, chloroplastic and mitochondrial GR, mitochondrial Mn-SOD, cytosolic and chloroplastic Cu/Zn-SOD, and chloroplastic Fe-SOD are the major scavenger enzymes, whereas cellular CAT may play a minor role in scavenging of O2 and H2O2 produced under PEG-induced water stress in Trifolium repens.  相似文献   

19.
Chickpea plants were subjected to salt stress for 48 h with 100 mM NaCl, after 50 days of growth. Other batches of plants were simultaneously treated with 0.2 mM sodium nitroprusside (NO donor) or 0.5 mM putrescine (polyamine) to examine their antioxidant effects. Sodium chloride stress adversely affected the relative water content (RWC), electrolyte leakage and lipid peroxidation in leaves. Sodium nitroprusside and putrescine could completely ameliorate the toxic effects of salt stress on electrolyte leakage and lipid peroxidation and partially on RWC. No significant decline in chlorophyll content under salt stress as well as with other treatments was observed. Sodium chloride stress activated the antioxidant defense system by increasing the activities of peroxidase (POX), catalase (CAT) superoxide dismutase (SOD) and ascorbate peroxidase (APX). However no significant effect was observed on glutathione reductase (GR) and dehydro ascorbate reductase (DHAR) activities. Both putrescine and NO had a positive effect on antioxidant enzymes under salt stress. Putrescine was more effective in scavenging superoxide radical as it increased the SOD activity under salt stress whereas nitric oxide was effective in hydrolyzing H2O2 by increasing the activities of CAT, POX and APX under salt stress.  相似文献   

20.
Changes in contents of reactive oxygen species (O2 and H2O2) and non-enzymatic antioxidants, activities of antioxidant enzymes and lipid peroxidation were investigated during senescence of detached cucumber cotyledons dipped in water (control) and 20 mg dm−3 triadimefon (TDM). O2 and H2O2 accumulation and lipid peroxidation were observed during senescence of cucumber cotyledons, which coincided with a drop in the contents of carotenoids (Car) and ascorbic acid (AsA), and the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), and an increase in the activity of peroxidase (POD). However, TDM could significantly inhibit the accumulation of O2 and H2O2, and lipid peroxidation by preventing the decrease of CAT, APX, Car and AsA and the increase of POD, while TDM had little effect on SOD activity during the senescence. Therefore we can draw a conclusion that TDM protects the membrane system and retards the senescence of detached cucumber cotyledons. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号