首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Cultural niche construction in a metapopulation   总被引:2,自引:0,他引:2  
Cultural niche construction is the process by which certain evolving cultural traits form a cultural niche that affects the evolution of other genetic and cultural traits [Laland, K., et al., 2001. Cultural niche construction and human evolution. J. Evol. Biol. 14, 22-33; Ihara, Y., Feldman, M., 2004. Cultural niche construction and the evolution of small family size. Theor. Popul. Biol. 65, 105-111]. In this study we focus on cultural niche construction in a metapopulation (a population of populations), where the frequency of one cultural trait (e.g. the level of education) determines the transmission rate of a second trait (e.g. the adoption of fertility reduction preferences) within and between populations. We formulate the Metapopulation Cultural Niche Construction (MPCNC) model by defining the cultural niche induced by the first trait as the construction of a social interaction network on which the second trait may percolate. Analysis of the model reveals dynamics that are markedly different from those observed in a single population, allowing, for example, different (or even opposing) dynamics in each population. In particular, this model can account for the puzzling phenomenon reported in previous studies [Bongaarts, J., Watkins, S., 1996. Social interactions and contemporary fertility transitions. Popul. Dev. Rev. 22 (4), 639-682] that the onset of the demographic transition in different countries occurred at ever lower levels of development.  相似文献   

2.
Organisms frequently choose, regulate, construct and destroy important components of their environments, in the process changing the selection pressures to which they and other organisms are exposed. We refer to these processes as niche construction. In humans, culture has greatly amplified our capacity for niche construction and our ability to modify selection pressures. We use gene‐culture coevolutionary models to explore the evolutionary consequences of culturally generated niche construction through human evolution. Our analysis suggests that where cultural traits are transmitted in an unbiased fashion from parent to offspring, cultural niche construction will have a similar effect to gene‐based niche construction. However, cultural transmission biases favouring particular cultural traits may either increase or reduce the range of parameter space over which niche construction has an impact, which means that niche construction with biased transmission will either have a much smaller or a much bigger effect than gene‐based niche construction. The analysis also reveals circumstances under which cultural transmission can overwhelm natural selection, accelerate the rate at which a favoured gene spreads, initiate novel evolutionary events and trigger hominid speciation. Because cultural processes typically operate faster than natural selection, cultural niche construction probably has more profound consequences than gene‐based niche construction, and is likely to have played an important role in human evolution.  相似文献   

3.
Previous studies of relative brain size in mammals have suggested an association with complex habitats and with low reproductive rate. In order to examine the causal relationships more thoroughly, a detailed examination of relative brain size variation in the genus Peromyscus was undertaken. Endocranial volumes were used to estimate brain weight for 32 species including 161 subspecies, and relative brain size calculated as the species deviation from the allometric relationship between brain and body size. The intrageneric allometric coefficient was higher than most values previously reported from low taxonomic levels, but intraspecific coefficients were generally lower than this. Island species, and relict species isolated on mountain tops, which may be ecological ‘islands’, had consistently small relative brain sizes, but peninsular species were large brained. Among the remaining species there were significant correlations between litter size and relative brain size, and between the number of competitor species and relative brain size. Species with many competitor species have relatively large brains and small litters. It is concluded that the nature of the geographical distribution, the pattern of species formation and habitat complexity all influence relative brain size in existing forms.  相似文献   

4.
Previous studies of relative brain size in mammals have suggested an association with complex habitats and with low reproductive rate. In order to examine the causal relationships more thoroughly, a detailed examination of relative brain size variation in the genus Peromyscus was undertaken. Endocranial volumes were used to estimate brain weight for 32 species including 161 subspecies, and relative brain size calculated as the species deviation from the allometric relationship between brain and body size. The intrageneric allometric coefficient was higher than most values previously reported from low taxonomic levels, but intraspecific coefficients were generally lower than this.
Island species, and relict species isolated on mountain tops, which may be ecological 'islands', had consistently small relative brain sizes, but peninsular species were large brained. Among the remaining species there were significant correlations between litter size and relative brain size, and between the number of competitor species and relative brain size. Species with many competitor species have relatively large brains and small litters. It is concluded that the nature of the geographical distribution, the pattern of species formation and habitat complexity all influence relative brain size in existing forms.  相似文献   

5.
Human reproductive behaviour is marked by exceptional variation at the population and individual level. Human behavioural ecologists propose adaptive hypotheses to explain this variation as shifting phenotypic optima in relation to local socioecological niches. Here we review evidence that variation in fertility (offspring number), in both traditional and modern industrialized populations, represents optimization of the life-history trade-off between reproductive rate and parental investment. While a reliance on correlational methods suggests the true costs of sibling resource competition are often poorly estimated, a range of anthropological and demographic studies confirm that parents balance family size against offspring success. Evidence of optimization is less forthcoming. Declines in fertility associated with modernization are particularly difficult to reconcile with adaptive models, because fertility limitation fails to enhance offspring reproductive success. Yet, considering alternative measures, we show that modern low fertility confers many advantages on offspring, which are probably transmitted to future generations. Evidence from populations that have undergone or initiated demographic transition indicate that these rewards to fertility limitation fall selectively on relatively wealthy individuals. The adaptive significance of modern reproductive behaviour remains difficult to evaluate, but may be best understood in response to rising investment costs of rearing socially and economically competitive offspring.  相似文献   

6.
The articles in this theme issue seek to understand the evolutionary bases of social learning and the consequences of cultural transmission for the evolution of human behaviour. In this introductory article, we provide a summary of these articles (seven articles on the experimental exploration of cultural transmission and three articles on the role of gene-culture coevolution in shaping human behaviour) and a personal view of some promising lines of development suggested by the work summarized here.  相似文献   

7.
The evolutionary success of the novel Wrinkly Spreader (WS) genotypes in diversifying Pseudomonas fluorescens SBW25 populations in static liquid microcosms has been attributed to the greater availability of O2 at the air–liquid (A–L) interface where the WS produces a physically cohesive-class biofilm. However, the importance of O2 gradients in SBW25 adaptation has never been examined. We have explicitly tested the role of O2 in evolving populations using microsensor profiling and experiments conducted under high and low O2 conditions. Initial colonists of static microcosms were found to establish O2 gradients before significant population growth had occurred, converting a previously homogenous environment into one containing a resource continuum with high and low O2 regions. These gradients were found to persist for long periods by which time significant numbers of WS had appeared colonising the high O2 niches. Growth was O2 limited in static microcosms, but high O2 conditions like those found near the A–L interface supported greater growth and favoured the emergence of WS-like genotypes. A fitness advantage to biofilm formation was seen under high but not low O2 conditions, suggesting that the cost of biofilm production could only be offset when O2 levels above the A–L interface were high. Profiling of mature WS biofilms showed that they also contained high and low O2 regions. Niches within these may support further diversification and succession of the developing biofilm population. O2 availability has been found to be a major factor underlying the evolutionary success of the WS genotype in static microcosms and illustrates the importance of this resource continuum in microbial diversification and adaptation.  相似文献   

8.
Our knowledge of early Australasian societies has significantly expanded in recent decades with more than 220 Pleistocene sites reported from a range of environmental zones and depositional contexts. The uniqueness of this dataset has played an increasingly important role in global debates about the origins and expression of complex behaviour among early modern human populations. Nevertheless, discussions of Pleistocene behaviour and cultural innovation are yet to adequately consider the effects of taphonomy and archaeological sampling on the nature and representativeness of the record. Here, we investigate the effects of preservation and sampling on the archaeological record of Sahul, and explore the implications for understanding early cultural diversity and complexity. We find no evidence to support the view that Pleistocene populations of Sahul lacked cognitive modernity or cultural complexity. Instead, we argue that differences in the nature of early modern human populations across the globe were more likely the consequence of differences in population size and density, interaction and historical contingency.  相似文献   

9.
Primates of the subfamily Callitrichinae (Callimico, Callithrix, Leontopithecus, and Saguinus) are small-bodied New World monkeys (105-700 g) possessing clawlike nails on all manual and pedal digits excluding the hallux. Specialized nails in these genera serve a critical function in feeding by enabling tamarins and marmosets to cling to trunks and other large vertical supports while exploiting food resources. Within the subfamily, there is evidence of at least four distinct large-branch feeding patterns. These include (1) seasonal exudate feeding and occasional trunk foraging (many Saguinus spp.); (2) exploitation of bark surface insects and the use of trunks as a platform to locate terrestrial prey (Saguinus fuscicollis, S. nigricollis, and Callimico); (3) manipulative foraging and bark stripping to locate concealed insects and small vertebrates (Leontopithecus); and (4) tree gouging and year-round exudate feeding (many Callithrix). Large-branch feeding and the use of vertical clinging postures appear to be a primary adaptation among virtually all callitrichines, distinguishing them ecologically from other platyrrhine taxa. Given the anatomy and behavior of extant callitrichines, Saguinus appears to be the most ecologically generalized member of this subfamily, and species of this genus may provide useful models for reconstructing the feeding and foraging adaptations of early callitrichines.  相似文献   

10.
Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language--the site of such integration seems to be the parietal and extending opercular cortices.  相似文献   

11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号