共查询到20条相似文献,搜索用时 0 毫秒
1.
The cancer-associated gene (CAGE) is a novel cancer/testis antigen. Over-expression of it increased phosphorylation of focal adhesion kinase (FAK) and enhanced motility of SNU387 cells. Focal adhesion, kinase-related non-kinase (FRNK), an endogenous inhibitor of FAK, was significantly suppressed. This suggests that CAGE-promoted motility requires FAK. The inhibition of Rho-Associated coiled-coil-containing protein kinase (ROCK), an activator of FAK, also suppressed CAGE-promoted motility. 相似文献
2.
The role of transglutaminase II (TGase II) in hyaluronic acid (HA)-promoted melanoma cell motility was investigated. HA induced
the expression of TGase II via the nuclear factor κB (NF-kB) in melanoma cells. HA increased the Rac1 activity and phosphorylation
of focal adhesion kinase (FAK). Transfection by lipofectamine of dominant-negative Rac1, and FAK-related non-kinase (FRNK),
an endogenous inhibitor of FAK, suppressed the induction of TGase II. This suggests that Rac1 and FAK mediate induction of
TGase II by HA. HA-promoted melanoma cell motility was inhibited by cystamine, an inhibitor of TGase II, and overexpression
of TGase II enhanced melanoma cell motility through reactive oxygen species. Taken together, HA promotes melanoma cell motility
through activation of Rac1, FAK, and induction of TGase II. 相似文献
3.
Focal adhesion kinase (FAK) and integrin-linked kinase (ILK) are both involved in integrin-mediated cell migration. However, the molecular mechanism, and the relationship between FAK and ILK activity in signaling transduction for the osteopontin (OPN)-induced migration of vascular smooth muscle cells (VSMCs) remain unclear. Here, we show that treating VSMCs with OPN could result in the dissociation of FAK with ILK by inducing phosphorylation of the former and dephosphorylation of the latter. Furthermore, we demonstrate that FAK phosphorylation induced by OPN is coupled with ILK dephosphorylation. We also provide evidence that ILK acts downstream of FAK in the signaling pathways that mediate OPN-induced VSMC migration. These findings suggest that FAK phosphorylation and ILK dephosphorylation play important roles in VSMC migration induced by OPN. 相似文献
4.
Lung cancers which show increased vascularization and high microvessel density are considered highly metastatic and with poor prognosis. Growth hormone releasing hormone (GHRH) antagonists are anticancer agents without adverse events in lung cancer tumor models. In the present study we investigated the in vitro effect of GHRH antagonist, MZ-5-156, on focal adhesion kinase (FAK) activity, on the expression of MMP-2 and MMP-9 metalloproteinases, as well as on vascular endothelial growth factor (VEGF) levels in A549 non-small cell lung (NSCLC) cancer cells and H727 bronchial carcinoid cells. We demonstrate for the first time that GHRH antagonist, MZ-5-156, inhibits FAK signaling in lung cancer cells and decreases the expression of additional factors involved in angiogenesis and invasion. In contrast, GHRH itself counteracted these effects. Our study contributes to the further understanding of the processes which govern the mechanism of action of GHRH and its antagonists in cancers. 相似文献
5.
Integrin signaling is a major pathway of cell adhesion to extracellular matrices that regulates many physiological cell behaviors such as cell proliferation, migration or differentiation and is implied in pathologies such as tumor invasion. In this paper, we focused on the molecular system formed by the two kinases FAK (focal adhesion kinase) and Src, which undergo auto- and co-activation during early steps of integrin signaling. The system is modelled using classical kinetic equations and yields a set of three nonlinear ordinary differential equations describing the dynamics of the different phosphorylation forms of FAK. Analytical and numerical analysis of these equations show that this system may in certain cases amplify incoming signals from the integrins. A quantitative condition is obtained, which indicates that the total FAK charge in the system acts as a critical mass that must be exceeded for amplification to be effective. Furthermore, we show that when FAK activity is lower than Src activity, spontaneous oscillations of FAK phosphorylation forms may appear. The oscillatory behavior is studied using bifurcation and stability diagrams. We finally discuss the significance of this behavior with respect to recent experimental results evidencing FAK dynamics. 相似文献
6.
7.
As FAK integrates membrane receptor signalling, yet is also found in the nucleus, we investigated whether nuclear FAK is regulated by membrane receptor activation. Activation of the mast cell FcepsilonRI receptor leads to the release and synthesis of inflammatory mediators as well as increased proliferation and survival. Using RBL-2H3 basophilic leukaemia cells, FAK and the FcepsilonRI receptor were co-localised following cross-linking of IgE with antigen. This also resulted in a significant increase in the nucleus of several N-terminal FAK fragments, the largest of which included the kinase domain but not the focal adhesion targeting domain. This was confirmed using cells that stably expressed recombinant EGFP-FAK. Furthermore, treatment of EGFP-FAK expressing cells with Leptomycin B, an inhibitor of nuclear export, resulted in increased nuclear localisation of EGFP-FAK. Therefore, FAK can shuttle between the nuclear and cytoplasmic compartments and the cellular distribution of N-terminal FAK is regulated by membrane receptor activation. 相似文献
8.
Bingyu Zhang Qing Luo Xinjian Mao Baiyao Xu Li Yang Yang Ju Guanbin Song 《Experimental cell research》2014
Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. 相似文献
9.
Transendothelial migration of cancer cells from the vasculature into tissue stroma is a final step in the metastatic cascade, prior to formation of secondary tumors. Due to its role in 2-dimensional migration of cells on extracellular matrix proteins, we hypothesized that focal adhesion kinase (FAK) promotes transendothelial migration of cancer cells. AU-565 cells are weakly invasive metastatic breast adenocarcinoma cells that migrate through bovine lung microvessel endothelial cell monolayers. Electric cell-substrate impedance sensing detects a significant decrease in monolayer resistance upon addition of AU-565 cells. Immunofluorescence microscopy and filter-based migration assays demonstrate that this drop in resistance correlates with transendothelial migration. Transfection of AU-565 cells with FAK siRNA results in significantly diminished transendothelial migration of AU-565 cells within 15h. Expression of the dominant negative FAK inhibitor FAK-related non-kinase (FRNK) also results in delayed AU-565 transendothelial migration, whereas over-expression of wildtype FAK does not impact transendothelial migration substantially. These results demonstrate that FAK affects the rate of a key step in the metastatic cascade. 相似文献
10.
Chim SM Qin A Tickner J Pavlos N Davey T Wang H Guo Y Zheng MH Xu J 《The Journal of biological chemistry》2011,286(25):22035-22046
Angiogenesis is required for bone development, growth, and repair. It is influenced by the local bone environment that involves cross-talks between endothelial cells and adjacent bone cells. However, data regarding factors that directly contribute to angiogenesis by bone cells remain poorly understood. Here, we report that EGFL6, a member of the epidermal growth factor (EGF) repeat superfamily proteins, induces angiogenesis by a paracrine mechanism in which EGFL6 is expressed in osteoblastic-like cells but promotes migration and angiogenesis of endothelial cells. Co-immunoprecipitation assays revealed that EGFL6 is secreted in culture medium as a homodimer protein. Using scratch wound healing and transwell assays, we found that conditioned medium containing EGFL6 potentiates SVEC (a simian virus 40-transformed mouse microvascular endothelial cell line) endothelial cell migration. In addition, EGFL6 promotes the endothelial cell tube-like structure formation in Matrigel assays and angiogenesis in a chick embryo chorioallantoic membrane. Furthermore, we show that EGFL6 recombinant protein induces phosphorylation of ERK in SVEC endothelial cells. Inhibition of ERK impaired EGFL6-induced ERK activation and endothelial cell migration. Together, these results demonstrate, for the first time, that osteoblastic-like cells express EGFL6 that is capable of promoting endothelial cell migration and angiogenesis via ERK activation. Thus, the EGLF6 mediates a paracrine mechanism of cross-talk between vascular endothelial cells and osteoblasts and might offer an important new target for the potential treatment of bone diseases, including osteonecrosis, osteoporosis, and fracture healing. 相似文献
11.
Sphingosine kinase activation regulates hepatocyte growth factor induced migration of endothelial cells 总被引:13,自引:0,他引:13
Duan HF Wu CT Lu Y Wang H Liu HJ Zhang QW Jia XX Lu ZZ Wang LS 《Experimental cell research》2004,298(2):593-601
Hepatocyte growth factor (HGF)-induced migration of endothelial cells is critical for angiogenesis. Sphingosine kinase (SPK) is a key enzyme catalyzing the formation of sphingosine-1-phosphate (S1P), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through both intracellular and extracellular mechanisms. The aim of this study was to investigate whether activation of SPK is involved in the migration of endothelial cells induced by HGF. The biological functions of HGF are mediated through the activation of its high-affinity tyrosine kinase receptor, c-met protooncogene. In the present study, Treatment of ECV304 endothelial cells with HGF resulted in tyrosine phosphorylation of c-Met and activation of SPK in a concentration-dependent manner. Either Ly294002 or PD98059, specific inhibitor of the PI3K and ERK/MAPK pathways, respectively, blocked the HGF-induced activation of SPK. HGF stimulation significantly increased intracellular S1P level, but no detectable secretion of S1P into the cell culture medium was observed. Treatment of ECV304 cells with pertussis toxin (PTX) has no effect on the HGF-induced migration, indicating extracellular S1P is dispensable for this process. Overexpression of wild-type SPK gene in ECV 304 cells increased the intracellular S1P and enhanced the HGF-induced migration, whereas inhibition of cellular SPK activity by N,N-dimethylsphingosine (DMS), a potent inhibitor of SPK, or by expression of a dominant-negative SPK (DN-SK) blocked the HGF-induced migration of ECV 304 cells. It is suggested that PI3K and ERK/MAPK mediated the activation of SPK and would be involved in the HGF-induced migration of endothelial cells. These results elucidate a novel mechanism by which intracellularly generated S1P mediates signaling from HGF/c-Met to the endothelial cell migration. 相似文献
12.
Wu MH Lo JF Kuo CH Lin JA Lin YM Chen LM Tsai FJ Tsai CH Huang CY Tang CH 《Journal of cellular physiology》2012,227(8):3016-3026
Tumor malignancy is associated with several cellular properties including proliferation and ability to metastasize. Endothelin-1 (ET-1) the most potent vasoconstrictor plays a crucial role in migration and metastasis of human cancer cells. We found that treatment of human chondrosarcoma (JJ012 cells) with ET-1 increased migration and expression of matrix metalloproteinase (MMP)-13. ET-1-mediated cell migration and MMP-13 expression were reduced by pretreatment with inhibitors of focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), as well as the NF-κB inhibitor and the IκB protease inhibitor. In addition, ET-1 treatment induced phosphorylation of FAK, PI3K, AKT, and mTOR, and resulted in increased NF-κB-luciferase activity that was inhibited by a specific inhibitor of PI3K, Akt, mTOR, and NF-κB cascades. Taken together, these results suggest that ET-1 activated FAK/PI3K/AKT/mTOR, which in turn activated IKKα/β and NF-κB, resulting in increased MMP-13 expression and migration in human chondrosarcoma cells. 相似文献
13.
Kamarajan P Kapila YL 《Apoptosis : an international journal on programmed cell death》2007,12(12):2221-2231
Fibronectin regulates many cellular processes, including migration, proliferation, differentiation, and survival. Previously,
we showed that squamous cell carcinoma (SCC) cell aggregates escape suspension-induced, p53-mediated anoikis by engaging in
fibronectin-mediated survival signals through focal adhesion kinase (FAK). Here we report that an altered matrix, consisting
of a mutated, nonfunctional high-affinity heparin-binding domain and the V region of fibronectin (V+H−), induced anoikis in human SCC cells; this response was blocked by inhibitors of caspase-8 and caspase-3. Anoikis was mediated
by downregulation of integrin alpha v in a panel of SCC cells and was shown to be proteasome-dependent. Overexpression of
integrin alpha v or FAK inhibited the increase in caspase-3 activation and apoptosis, whereas suppression of alpha v or FAK
triggered a further significant increase in apoptosis, indicating that the apoptosis was mediated by suppression of integrin
alpha v levels and dephosphorylation of FAK. Treatment with V+H− decreased the phosphorylation of extracellular signal-regulated kinase (ERK) 1 and 2, and direct activation of ERK by constitutively
active MEK1, an ERK kinase, increased ERK1 and ERK2 phosphorylation and inhibited the increase in apoptosis induced by V+H−. ERK acted downstream from alpha v and FAK signals, since alpha v and FAK overexpression inhibited both the decrease in ERK
phosphorylation and the increase in anoikis triggered by V+H−. These findings provide evidence that mutations in the high-affinity heparin-binding domain in association with the V region
of fibronectin, or altered fibronectin matrices, induce anoikis in human SCC cells by modulating integrin alpha v-mediated
phosphorylation of FAK and ERK. 相似文献
14.
Arachidonic acid (AA) is a common dietary n-6 polyunsaturated fatty acid that is present in an esterified form in cell membrane phospholipids, and it might be present in the extracellular microenvironment. In particular, AA promotes MAPK activation and mediates the adhesion of MDA-MB-435 breast cancer cells to type IV collagen. However, the signal transduction pathways mediated by AA have not been studied in detail. Our results demonstrate that stimulation of MDA-MB-231 breast cancer cells with AA promotes an increase in the phoshorylation of Src and FAK, as revealed by site-specific antibodies that recognized the phosphorylation state of Src at Tyr-418, and of FAK at tyrosine-397 and in vitro kinase assays. In addition, AA also induces an increase in the migration of MDA-MB-231 cells. In contrast, AA does not induce phosphorylation of FAK and an increase in cell migration of non-tumorigenic epithelial cells MCF10A. Inhibition of Gi/Go proteins, LOX and Src activity prevent FAK activation and cell migration. In conclusion, our results demonstrate, for the first time, that Gi/Go proteins, LOX and Src play an important role in FAK activation and cell migration induced by AA in MDA-MB-231 breast cancer cells. 相似文献
15.
Shikata Y Rios A Kawkitinarong K DePaola N Garcia JG Birukov KG 《Experimental cell research》2005,304(1):40-49
Regulation of endothelial cell (EC) permeability by bioactive molecules is associated with specific patterns of cytoskeletal and cell contact remodeling. A role for mechanical factors such as shear stress (SS) and cyclic stretch (CS) in cytoskeletal rearrangements and regulation of EC permeability becomes increasingly recognized. This paper examined redistribution of focal adhesion (FA) proteins, site-specific focal adhesion kinase (FAK) phosphorylation, small GTPase activation and barrier regulation in human pulmonary EC exposed to laminar shear stress (15 dyn/cm2) or cyclic stretch (18% elongation) in vitro. SS caused peripheral accumulation of FAs, whereas CS induced randomly distributed FAs attached to the ends of newly formed stress fibers. SS activated small GTPase Rac without effects on Rho, whereas 18% CS activated without effect on Rac. SS increased transendothelial electrical resistance (TER) in EC monolayers, which was further elevated by barrier-protective phospholipid sphingosine 1-phosphate. Finally, SS induced FAK phosphorylation at Y576, whereas CS induced FAK phosphorylation at Y397 and Y576. These results demonstrate for the first time differential effects of SS and CS on Rho and Rac activation, FA redistribution, site-specific FAK phosphorylation, and link them with SS-mediated barrier enhancement. Thus, our results suggest common signaling and cytoskeletal mechanisms shared by mechanical and chemical factors involved in EC barrier regulation. 相似文献
16.
Angiotensin II induces focal adhesion kinase/paxillin phosphorylation and cell migration in human umbilical vein endothelial cells 总被引:2,自引:0,他引:2
Montiel M de la Blanca EP Jiménez E 《Biochemical and biophysical research communications》2005,327(4):971-978
In the present study, we demonstrated that Ang II provokes a transitory enhancement of focal adhesion kinase (FAK) and paxillin phosphorylation in human umbilical endothelial cells (HUVEC). Moreover, Ang II induces a time- and dose-dependent augmentation in cell migration, but does not affect HUVEC proliferation. The effect of Ang II on FAK and paxillin phosphorylation was markedly attenuated in cells pretreated with wortmannin and LY294002, indicating that phosphoinositide 3-kinase (PI3K) plays an important role in regulating FAK activation. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific inhibitor PP2 for Src family kinases, demonstrating the involvement of protein tyrosine kinases, and particularly Src family of tyrosine kinases, in the downstream signalling pathway of Ang II receptors. Furthermore, FAK and paxillin phosphorylation was markedly blocked after treatment of HUVEC with AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) phosphorylation. Pretreatment of cells with inhibitors of PI3K, Src family tyrosine kinases, and EGFR also decreased HUVEC migration. In conclusion, these results suggest that Ang II mediates an increase in FAK and paxillin phosphorylation and induces HUVEC migration through signal transduction pathways dependent on PI3K and Src tyrosine kinase activation and EGFR transactivation. 相似文献
17.
Inhibition of focal adhesion kinase (FAK) delays transendothelial migration of breast cancer cells. Here we investigate whether phosphorylation of specific tyrosine residues of FAK (397, 861, and 925) known to control aspects of cell migration on extracellular matrix (ECM), are also involved in transendothelial migration. AU-565 and MDA-MB-231 cells expressing Phe397 FAK show delayed or decreased transendothelial migration, demonstrating the involvement of the FAK autophosphorylation site. Only MDA-MB-231 cells expressing Phe861 FAK exhibit delayed transendothelial migration. Neither MDA-MB-231 nor AU-565 cells expressing Phe925 FAK show a change in transendothelial migration compared to untreated cancer cells. These findings suggest that modified signaling mechanisms regulate cancer cell migration through an endothelial monolayer versus those involved in cell migration on or through ECM. 相似文献
18.
In order to determine the role of the FERM domain in the regulation of FAK phosphorylation at Tyr-397, the major autophosphorylation site, we generated a truncated FAK lacking a region of the N-terminus corresponding to amino acids 1-384 (FAKDelta384). FAKDelta384 showed a striking increase in phosphorylation, as compared with wild type FAK, in lysates of either HEK 293 or FAK-/- cells. Interestingly, the truncated form of FAK lacking the N-terminal domain retains responsiveness to integrin-mediated signals, as judged by its dephosphorylation by holding cells in suspension and by the recovery of the phosphorylation when replating the cells on fibronectin. We propose a model in which removal of FERM-mediated auto-inhibition is important to increase FAK catalytic activity but the translocation and clustering of this enzyme at the focal adhesions is required for maximal phosphorylation at Tyr-397. 相似文献
19.
SOK1 is a member of the germinal center kinase (GCK-III) subfamily but little is known about it, particularly with respect to its role in signal transduction pathways relative to tumor metastasis. By stably transfecting SOK1 siRNA into the MCF-7 breast cancer cell line we found that SOK1 promotes the migration of MCF-7 cells, as determined using wound-healing and Boyden chamber assays. However, cell proliferation assays revealed that silencing SOK1 had no effect on cell growth relative to the normal cells. Silencing SOK1 also had an effect on the expression and phosphorylation status of a number of proteins in MCF-7 cells, including FAK and GM130, whereby a decrease in SOK1 led to an increase in the expression of these proteins. 相似文献
20.
Cell migration is a highly integrated process where actin turnover, actomyosin contractility, and adhesion dynamics are all closely linked. In this paper, we propose a computational model investigating the coupling of these fundamental processes within the context of spontaneous (i.e. unstimulated) cell migration. In the unstimulated cell, membrane oscillations originating from the interaction between passive hydrostatic pressure and contractility are sufficient to lead to the formation of adhesion spots. Cell contractility then leads to the maturation of these adhesion spots into focal adhesions. Due to active actin polymerization, which reinforces protrusion at the leading edge, the traction force required for cell translocation can be generated. Computational simulations first show that the model hypotheses allow one to reproduce the main features of fibroblast cell migration and established results on the biphasic aspect of the cell speed as a function of adhesion strength. The model also demonstrates that certain temporal parameters, such as the adhesion proteins recycling time and adhesion lifetimes, influence cell motion patterns, particularly cell speed and persistence of the direction of migration. This study provides some elements, which allow a better understanding of spontaneous cell migration and enables a first glance at how an individual cell would potentially react once exposed to a stimulus. 相似文献