首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelial morphogenesis, the role of this protein in the sensory hair cells remains unclear. To investigate the function of myosin VI in zebrafish, we cloned and examined the expression pattern of myosin VI, which is duplicated in the zebrafish genome. One duplicate, myo6a, is expressed in a ubiquitous pattern during early development and at later stages, and is highly expressed in the brain, gut, and kidney. myo6b, on the other hand, is predominantly expressed in the sensory epithelium of the ear and lateral line at all developmental stages examined. Both molecules have different splice variants expressed in these tissues. Using a candidate gene approach, we show that myo6b is satellite, a gene responsible for auditory/vestibular defects in zebrafish larvae. Examination of hair cells in satellite mutants revealed that stereociliary bundles are irregular and disorganized. At the ultrastructural level, we observed that the apical surface of satellite mutant hair cells abnormally protrudes above the epithelium and the membrane near the base of the stereocilia is raised. At later stages, stereocilia fused together. We conclude that zebrafish myo6b is required for maintaining the integrity of the apical surface of hair cells, suggesting a conserved role for myosin VI in regulation of actin-based interactions with the plasma membrane.  相似文献   

2.
To understand the molecular basis of sensory organ development and disease, we have cloned and characterized the zebrafish mutation dog-eared (dog) that is defective in formation of the inner ear and lateral line sensory systems. The dog locus encodes the eyes absent-1 (eya1) gene and single point mutations were found in three independent dog alleles, each prematurely truncating the expressed protein within the Eya domain. Moreover, morpholino-mediated knockdown of eya1 gene function phenocopies the dog-eared mutation. In zebrafish, the eya1 gene is widely expressed in placode-derived sensory organs during embryogenesis but Eya1 function appears to be primarily required for survival of sensory hair cells in the developing ear and lateral line neuromasts. Increased levels of apoptosis occur in the migrating primordia of the posterior lateral line in dog embryos and as well as in regions of the developing otocyst that are mainly fated to give rise to sensory cells of the cristae. Importantly, mutation of the EYA1 or EYA4 gene causes hereditary syndromic deafness in humans. Determination of eya gene function during zebrafish organogenesis will facilitate understanding the molecular etiology of human vestibular and hearing disorders.  相似文献   

3.
Mouse genetics has made crucial contributions to the understanding of the molecular mechanisms of hearing. With the help of a plethora of mouse mutants, many of the key genes that are involved in the development and functioning of the auditory system have been elucidated. Mouse mutants continue to shed light on the genetic and physiological bases of human hearing impairment, including both early- and late-onset deafness. A combination of genetic and physiological studies of mouse mutant lines, allied to investigations into the protein networks of the stereocilia bundle in the inner ear, are identifying key complexes that are crucial for auditory function and for providing profound insights into the underlying causes of hearing loss.  相似文献   

4.
Many different genes appear to be involved in the development and function of the mammalian inner ear. Some of the genes involved during early inner ear morphogenesis have been identified using mutations or targetted transgenic interruption, while a handful of genes involved in pigmentation anomalies associated with hearing impairement have been cloned. Several genes involved in syndromic late-onset hearing loss have also been isentified. However, the lajority of cases of hereditary hearing impairement from childhood probably involve genes expressed in the sensory neuroepithelia of the inner ear, and none of the genes or mutations causing this type of deafness have yet been identified. Here, we review the progress that has been made in finding genes for deafness and in using mouse mutants to elucidate the biological basis of the hearing deficit.  相似文献   

5.
6.
T-cell and thymic development are processes that have been highly conserved throughout vertebrate evolution. Mammals, birds, reptiles and fish share common molecular signalling pathways that regulate the development of the adaptive immune system. This Review article focuses on defining the similarities and differences between zebrafish and mammalian T-cell immunobiology, and it highlights the advantages of using the zebrafish as a genetic model to uncover mutations that affect T-cell and thymic development. Finally, we summarize the use of the zebrafish as a new model for assessing stem-cell function and for drug discovery.  相似文献   

7.
To advance the understanding of genetic mechanisms involved in the patterning and the differentiation of the vertebrate auditory system, we screened for mutations affecting ear development in the zebrafish larva. Fifteen recessive mutant alleles have been isolated and analyzed. The phenotypes of these mutants involve abnormalities in ear morphology, otolith formation, or both processes in parallel. Among morphological defects, we found mutations affecting early patterning of the otic vesicle, the morphogenesis of semicircular canals, and the expansion of the ear lumen. The two most severe mutant phenotypes involve the absence of anterior and posterior cristae, as well as a severely misshapen morphology of the ear. In the category of otolith mutants, we found defects in otolith formation, growth, and shape. As it proved to be the case in past screening efforts of this type, these mutant lines represent an asset in the studies of molecular mechanisms that regulate vertebrate ear development.  相似文献   

8.
9.
Sparc (Osteonectin), a matricellular glycoprotein expressed by many differentiated cells, is a major non-collagenous constituent of vertebrate bones. Recent studies indicate that Sparc expression appears early in development, although its function and regulation during embryogenesis are largely unknown. We cloned zebrafish sparc and investigated its role during development, using a mo rpholino antisense oligonucleotide-based knockdown approach. Consistent with its strong expression in the otic vesicle and developing pharyngeal cartilages, knockdown of Sparc function resulted in specific inner ear and cartilage defects that are highlighted by changes in gene expression, morphology and behavior. We rescued the knockdown phenotypes by co-injecting sparc mRNA, providing evidence that the knockdown phenotype is due specifically to impairment of Sparc function. A comparison of the phenotypes of Sparc knockdown and known zebrafish mutants with similar defects places Sparc downstream of sox9 in the genetic network that regulates development of the pharyngeal skeleton and inner ear of vertebrates.  相似文献   

10.
Over the last 20 years, the zebrafish has become an important model organism for research on retinal function and development. Many retinal diseases do not become apparent until the later stages of life. This means that it is important to be able to analyze (gene) function in the mature retina. To meet this need, we have established an organotypic culture system of mature wild-type zebrafish retinas in order to observe changes in retinal morphology. Furthermore, cell survival during culture has been monitored by determining apoptosis in the tissue. The viability and excitability of ganglion cells have been tested at various time points in vitro by patch-clamp recordings, and retinal functionality has been assessed by measuring light-triggered potentials at the ganglion cell site. Since neurogenesis is persistent in adult zebrafish retinas, we have also monitored proliferating cells during culture by tracking their bromodeoxyuridine uptake. Reverse genetic approaches for probing the function of adult zebrafish retinas are not yet available. We have therefore established a rapid and convenient protocol for delivering plasmid DNA or oligonucleotides by electroporation to the retinal tissue in vitro. The organotypic culture of adult zebrafish retinas presented here provides a reproducible and convenient method for investigating the function of drugs and genes in the retina under well-defined conditions in vitro.  相似文献   

11.
Clock mechanisms in zebrafish   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
Chaperone proteins are considered to be fairly ubiquitous proteins that promote the correct folding and assembly of multiple newly synthesized proteins. While performing an embryonic screen in zebrafish using morpholino phosphorodiamidate oligonucleotides (MPOs), we identified a role for an endoplasmic reticulum chaperone protein family member, zebrafish GP96. Knockdown of GP96 resulted in a specific otolith formation defect during early ear development. Otolith precursor particles did not adhere to the kinocilia of the tether cells in the GP96-MPO-injected embryos, aggregating instead into a single clump. Although otolith development was abnormal, the patterning of the ear and the differentiation of tether cells and macular sensory and support cells was not affected. We have isolated and sequenced the full open reading frame of zebrafish GP96 and characterized its expression pattern. GP96 is expressed both maternally and zygotically. GP96 RNA is localized within the floorplate, hatching gland, and in the cells of the otic placode and otic vesicle, consistent with the function of GP96 in ear development. We conclude that the GP96 chaperone protein is involved in the otolith formation during normal ear development. This is the first report of a specific function during organism development being attributed to a chaperone class molecule.  相似文献   

14.
Expression of zebrafish aldh1a3 (raldh3) and absence of aldh1a1 in teleosts   总被引:2,自引:1,他引:1  
The vitamin A-derived morphogen retinoic acid (RA) plays important roles during the development of chordate animals. The Aldh1a-family of RA-synthesizing enzymes consists of three members, Aldh1a1-3 (Raldh1-3), that are dynamically expressed throughout development. We have searched the known teleost genomes for the presence of Raldh family members and have found that teleost fish possess orthologs of Aldh1a2 and Aldh1a3 only. Here we describe the expression of aldh1a3 in the zebrafish, Danio rerio. Whole mount in situ hybridization shows that aldh1a3 is expressed during eye development in the retina flanking the optic stalks and later is expressed ventrally, opposite the expression domain of aldh1a2. During inner ear morphogenesis, aldh1a3 is expressed in developing sensory epithelia of the cristae and utricular macula and is specifically up-regulated in epithelial projections throughout the formation of the walls of the semicircular canals and endolymphatic duct. In contrast to the mouse inner ear, which expresses all three Raldhs, we find that only aldh1a3 is expressed in the zebrafish otocyst, while aldh1a2 is present in the periotic mesenchyme. During larval stages, additional expression domains of aldh1a3 appear in the anterior pituitary and the swim bladder. Our analyses provide a starting point for genetic studies to examine the role of RA in these organs and emphasize the suitability of the zebrafish inner ear in dissecting the contribution of RA signaling to the development of the vestibular system.  相似文献   

15.
16.
In the sensory receptors of both the eye and the ear, specialized apical structures have evolved to detect environmental stimuli such as light and sound. Despite the morphological divergence of these specialized structures and differing transduction mechanisms, the receptors appear to rely in part on a shared group of genes for function. For example, mutations in Usher (USH) genes cause a syndrome of visual and acoustic-vestibular deficits in humans. Several of the affected genes have been identified, including the USH1F gene, which encodes protocadherin 15 (PCDH15). Pcdh15 mutant mice also have both auditory and vestibular defects, although visual defects are not evident. Here we show that zebrafish have two closely related pcdh15 genes that are required for receptor-cell function and morphology in the eye or ear. Mutations in pcdh15a cause deafness and vestibular dysfunction, presumably because hair bundles of inner-ear receptors are splayed. Vision, however, is not affected in pcdh15a mutants. By contrast, reduction of pcdh15b activity using antisense morpholino oligonucleotides causes a visual defect. Optokinetic and electroretinogram responses are reduced in pcdh15b morpholino-injected larvae. In electron micrographs, morphant photoreceptor outer segments are improperly arranged, positioned perpendicular to the retinal pigment epithelium and are clumped together. Our results suggest that both cadherins act within their respective transduction organelles: Pcdh15a is necessary for integrity of the stereociliary bundle, whereas Pcdh15b is required for alignment and interdigitation of photoreceptor outer segments with the pigment epithelium. We conclude that after a duplication of pcdh15, one gene retained an essential function in the ear and the other in the eye.  相似文献   

17.
Hair cells of the inner ear develop from an equivalence group marked by expression of the proneural gene Atoh1. In mouse, Atoh1 is necessary for hair cell differentiation, but its role in specifying the equivalence group (proneural function) has been questioned and little is known about its upstream activators. We have addressed these issues in zebrafish. Two zebrafish homologs, atoh1a and atoh1b, are together necessary for hair cell development. These genes crossregulate each other but are differentially required during distinct developmental periods, first in the preotic placode and later in the otic vesicle. Interactions with the Notch pathway confirm that atoh1 genes have early proneural function. Fgf3 and Fgf8 are upstream activators of atoh1 genes during both phases, and foxi1, pax8 and dlx genes regulate atoh1b in the preplacode. A model is presented in which zebrafish atoh1 genes operate in a complex network leading to hair cell development.  相似文献   

18.
Functional genomics tools for the analysis of zebrafish pigment   总被引:3,自引:0,他引:3  
Genetic model organisms are increasingly valuable in the post-genomics era to provide a basis for comparative analysis of the human genome. For higher order processes of vertebrate pigment cell biology and development, the mouse has historically been the model of choice. A complementary organism, the zebrafish (Danio rerio), shares many of the signaling and biological processes of vertebrates, e.g. neural crest development. The zebrafish has a number of characteristics that make it an especially valuable model for the study of pigment cell biology and disease. Large-scale genetic screens have identified a collection of pigmentation mutants that have already made valuable contributions to pigment research. An increasing repertoire of genomic resources such as an expressed sequence tag-based Gene Index (The Institute for Genomic Research) and improving methods of mutagenesis, transgenesis, and gene targeting make zebrafish a particularly attractive model. Morpholino phosphorodiamidate oligonucleotide (MO) 'knockdown' of pigment gene expression provides a non-conventional antisense tool for the analysis of genes involved in pigment cell biology and disease. In addition, an ongoing, reverse-genetic, MO-based screen for the rapid identification of gene function promises to be a valuable complement to other high-throughput microarray and proteomic approaches for understanding pigment cell biology. Novel reagents for zebrafish transgenesis, such as the Sleeping Beauty transposon system, continue to improve the capacity for genetic analysis in this system and ensure that the zebrafish will be a valuable genetic model for understanding a variety of biological processes and human diseases for years to come.  相似文献   

19.
The olfactory system has become a popular model to study the function of neuronal circuits and the molecular and cellular mechanisms underlying the development of neurons and their connections. An excellent model to combine studies of function and development is the zebrafish because it not only permits sophisticated molecular and genetic analyses of development, but also functional measurements of neuronal activity patterns in the intact brain. This article reviews insights into the functional development of the olfactory system that have been obtained in zebrafish. The focus is on the specification of olfactory sensory neurons (OSNs), the mechanisms controlling odorant receptor expression and OSN identity, the pathfinding of OSN axons towards target glomeruli in the olfactory bulb (OB), the development of glomeruli and functional topographic maps in the OB, and the development of inhibitory interneurons in the OB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号