首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The actin of muscle and fibroblasts.   总被引:3,自引:3,他引:0       下载免费PDF全文
The isolation and quantification of an 18-residue peptide from the N-terminal region of chicken actin was used to quantify the amount of actin in acetone-dried powders of chicken breast muscle and chicken-embryo fibroblasts. Either isotope dilution or double labelling can be used for peptide quantification. About 17% of the protein of chicken breast muscle was estimated to be actin. However, only 0.25% of the protein of chicken-embryo fibroblasts was determined to be actin by quantification of this peptide. The actin content of fibroblasts may be low or the amino acid sequences of muscle and fibroblast actin may differ in the N-terminal region. The methodology used can be extended to examine whether other regions of muscle actin sequence are present in fibroblasts or other cell types.  相似文献   

2.
Double-labelling and peptide isolation have been used to examine the homology between the actin of IMR-90 human embryo fibroblasts and muscle actin. After separation of mixtures of [14C]carboxymethylated muscle actin and [3H]carboxymethylated proteins of IMR-90 cells of electrophoresis on sodium dodecyl sulphate-containing polyacrylamide gels, peptides were generated from the material co-migrating with actin by digestion with chymotrypsin. Peptides homologous with peptides accounting for Cys-217, Cys-256, Cys-284 and Cys-373 of muscle actin are present in this material, but no peptide homologous with a Cys-10-containing peptide was detected. From the amount of actin-derived peptides present, the actin content of IMR-90 fibroblasts was calculated to be 4.2% of the total protein of these cells.  相似文献   

3.
The blocking effect of the NH2-terminal decapeptide of alpha-smooth muscle (SM) actin AcEEED-STALVC on the binding of the specific monoclonal antibody anti-alpha SM-1 (Skalli, O., P. Ropraz, A. Trzeviak, G. Benzonana, D. Gillessen, and G. Gabbiani. 1986. J. Cell Biol. 103:2787-2796) was compared with that of synthetic peptides modified by changing the acetyl group or by substituting an amino acid in positions 1 to 5. Using immunofluorescence and immunoblotting techniques, anti-alpha SM-1 binding was abolished by the native peptide and by peptides with a substitution in position 5, indicating that AcEEED is the epitope for anti-alpha SM-1. Incubation of anti-alpha SM- 1 (or of its Fab fragment) with arterial SM actin increased polymerization in physiological salt conditions; the antibody binding did not hinder the incorporation of the actin antibody complex into the filaments. This action was not exerted on skeletal muscle actin. After microinjection of the alpha-SM actin NH2-terminal decapeptide or of the epitopic peptide into cultured aortic smooth muscle cells, double immunofluorescence for alpha-SM actin and total actin showed a selective disappearance of alpha-SM actin staining, detectable at approximately 30 min. When a control peptide (e.g. alpha-skeletal [SK] actin NH2-terminal peptide) was microinjected, this was not seen. This effect is compatible with the possibility that the epitopic peptide traps a protein involved in alpha-SM actin polymerization during the dynamic filament turnover in stress fibers. Whatever the mechanism, this is the first evidence that the NH2 terminus of an actin isoform plays a role in the regulation of polymerization in vitro and in vivo.  相似文献   

4.
Several studies using a variety of approaches have suggested a possible role for the amino-terminal residues of skeletal muscle actin in acto-myosin interaction. In order to assess the significance of acto-S-1 contacts involving the N-terminal segment of actin, we have prepared polyclonal antisera against a synthetic peptide corresponding to the seven amino-terminal residues of rabbit skeletal muscle actin (alpha-N-terminal peptide). Affinity-purified immunoglobulin (Ig) G (and Fab) prepared from these antisera reacts strongly and specifically with the amino-terminal segment of both G- and F-actin but not with myosin subfragment 1 (S-1). This specificity was determined by Western blot analysis of actin and its proteolytic fragments and the inhibition of the above reactivity by the alpha-N-terminal peptide. The alpha-N-terminal peptide did not interact with S-1 in solution, affect S-1 and actin-activated S-1 MgATPase, or cause dissociation of the acto-S-1 complex. In separate experiments F-actin could be cosedimented with S-1 and affinity-purified IgG or Fab by using an air-driven ultracentrifuge. Densitometric analysis of sodium dodecyl sulfate/polyacrylamide gels of pellet and supernatant fractions from such experiments demonstrated the binding of both S-1 and IgG or Fab to the same F-actin protomer. Our results suggest that, while the acidic N-terminal amino acids of actin may contact the myosin head, these residues cannot be the main determinants of acto-S-1 interaction.  相似文献   

5.
本文对玉米花粉肌动蛋白和兔骨骼肌肌动蛋白进行了比较研究。玉米花粉肌动蛋白与兔骨骼肌肌动蛋白具有相同的分子量(42KD)。玉米花粉肌动蛋白可与兔抗鸡胃肌动蛋白抗血清产生免疫沉淀反应。玉米花粉肌动蛋白与兔骨骼肌肌动蛋白的氨基酸组成以及胰蛋白酶水解所得到的肽谱都相似。它们的羧基未端氨基酸顺序完全一致,其顺序都是Lys.Cys.Phe(COOH)。它们的圆二色谱基本相同,由圆二色谱计算得到的二级结构数据也相近。以上的结果表明了玉米花粉肌动蛋白与兔骨骼肌肌动蛋白的相似性。  相似文献   

6.
1. Actins were purified from camel brain, skeletal muscle and heart muscle and their properties were compared. 2. Individual actins were homogeneous and comigrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 3. Isoelectric focusing analysis of camel skeletal muscle and heart muscle actin showed a single polypeptide of the alpha-species, while camel brain actin showed two polypeptides of the beta- and gamma-species typical of non-muscle actin. 4. Actins from camel skeletal muscle and heart muscle showed a greater degree of similarity to each other and to rabbit skeletal muscle actin and showed some differences from camel brain actin, as confirmed by amino acid analysis and one-dimensional peptide mapping.  相似文献   

7.
The protein chemical characterization of the amino-terminal tryptic peptide of actin from different bovine tissues shows that at least six different actin structural genes are expressed in this mammal.Unique amirio acid sequences are found for actin from skeletal muscle, for actin from heart muscle, for two different actin species from smooth muscle, and for two different actin species typical of non-muscle tissues such as brain and thymus. The presence of more than one actin species in the same tissue (e.g. nonmuscle tissues and smooth muscles) is demonstrated by different amino-terminal peptides which, however, are closely related. The actins from the sarcomeric muscles (e.g. skeletal muscle and heart muscle) show unique but extremely similar amino-terminal peptides. A limited comparison of bovine and avian actins involving smooth and skeletal muscles emphasizes that among higher vertebrates actin divergence involves tissue rather than species specificity.For the lower eukaryotic organism Physarum polycephalum a single actin amino-terminal peptide is found, indicating that only one actin species is present during the plasmodial stage. The amino acid sequence of this peptide although unique reveals a high degree of homology with the corresponding mammalian cytoplasmic actin peptides.Different actin extraction and purification procedures have been compared by the relative yields of the different amino-terminal peptides. The results indicate that the various actin species obtained by the current purification procedures are a true reflection of the actual actins present in the tissue. In addition we compare the resolution provided by either isoelectric focusing analysis of different actins or by the protein chemical characterization of the amino-terminal peptides of different actins. We show that the latter procedure is more suitable for recording changes in actin expression during evolution and differentiation.  相似文献   

8.
Mouse sarcoma 180 cells have a polypeptide that has the same molecular weight as actin but it is more acidic than alpha-actin. Its tryptic peptide pattern on reversed-phase HPLC was very similar to that of beta + gamma-actin, an actin sample prepared by affinity chromatography on DNase I-Sepharose contained the acidic polypeptide, and monoclonal anti-actin antibody reacted with it; therefore, the polypeptide is considered an actin isoform. The mRNA for this variant actin was identified by analyzing the polypeptides translated in vitro, which indicated that the variant actin is not a post-translationally modified form of any known actin. The variant actin was not stained by polyclonal anti-gizzard actin antibody which reacts with gamma-cytoplasmic, alpha-smooth and gamma-smooth muscle actins, nor by polyclonal anti-skeletal muscle actin antibody which reacts with skeletal, cardiac and alpha-smooth muscle actins. These results suggest that this variant actin is related to beta-cytoplasmic actin or, is a novel species whose N-terminal amino acid sequence is not Glu-Glu-Glu.  相似文献   

9.
Actin associated with membranes from 3T3 mouse fibroblast and HeLa cells   总被引:25,自引:15,他引:10       下载免费PDF全文
A protein component of membranes isolated from 3T3 mouse fibroblasts and HeLa cells has been identified as actin by peptide mapping. Extensive but apparently not total coincidence was found between the peptide maps of these two nonmuscle membrane-associated actins compared to chick skeletal muscle actin. Between 2 and 4 percent of the total membrane protein appears in the actin band on sodium dodecyl sulfate polyacrylamide gels of 3T3 membranes while about 4 percent of the membrane protein appears as the actin band from HeLa membranes. These values represent approximately the same proportion of actin to total protein found in the cell homogenates. Treatment of intact cells with levels of cytochalasin B sufficient to cause pronounced morphological changes did not change the amount of actin associated with the membrane in either 3T3 or HeLa cells. However, incubation of isolated membranes under conditions favoring conversion of actin from filamentous to monomeric form resulted in dissociation of approximately 80 and 60 percent of the actin from 3T3 and HeLa membranes, respectively. Thus, approximately 20 percent of 3T3 membrane actin and 40 percent of HeLa membrane actin remained associated with the membrane even under actin depolymerizing conditions.  相似文献   

10.
在有Ca2+和钙调蛋白存在时,肌球蛋白轻链激酶催化肌球蛋白磷酸化,促使肌动蛋白激活的肌球蛋白(肌动球蛋白)Mg2+-ATP酶活性显著增加.然而,肌球蛋白磷酸化水平与Mg2+-ATP酶之间的关系是非线性的,原肌球蛋白可以进一步增加Mg2+-ATP酶的活性,但仍不改变它们之间的非线性关系.肌球蛋白轻链激酶的合成肽抑制剂抑制了肌球蛋白磷酸化和Mg2+-ATP酶活性,并导致平滑肌去膜肌纤维的等长收缩张力与速度的降低.结果提示肌球蛋白轻链激酶参与脊椎动物平滑肌收缩的调节过程,肌球蛋白轻链磷酸化作用会引起平滑肌收缩  相似文献   

11.
Both mammalian nonmuscle and muscle actins possess an AcAsp(Glu)NH2 terminus. The nonmuscle actin genes code for a polypeptide with a Met-Asp NH2 terminus (class I) whereas the muscle actin genes code for a polypeptide with a Met-Cys-Asp NH2 terminus (class II). Two amino acids must be removed for mature muscle actin synthesis, whereas only the Met must be removed for nonmuscle actin synthesis. We wished to know whether a nonmuscle cell which normally does not synthesize a class I actin can correctly process a muscle actin with its extra NH2-terminal amino acid in vivo. To answer this question we have used L/LK165 cells, a mouse L-cell transfected with a human cardiac muscle actin gene. When these cells were labeled overnight with [35S]Cys, an actin with an NH2-terminal tryptic peptide corresponding to that of mature cardiac muscle actin was detected. When the cells were pulse-labeled for 20 min, a new actin intermediate containing an AcCys-Asp amino terminus was observed which then disappeared with time. Furthermore, the muscle actin was processed as fast if not faster than the nonmuscle actin in these cells. This actin intermediate was also seen in chick myotube cultures. Our results show that the ability to correctly process muscle specific actins is not tissue specific. Furthermore, these results confirm a processing pathway for class II actins proposed by us earlier on the basis of experiments with a cell-free translation system.  相似文献   

12.
1. The 3-methylhistidine content of myosin varies according to muscle type. It is highest in myosin from white skeletal muscle and lower values are obtained from myosin of red skeletal and smooth muscle. 2. The 3-methylhistidine content of actin was similar in all of the types of muscle from which it was isolated. 3. The 3-methylhistidine of rabbit actin is localized in a single tryptic peptide that was readily modified during fractionation procedures. 4. Photo-oxidation studies indicated that the 3-methylhistidine residues are not essential for adeonsine triphosphatase and actin-combining activities of myosin. 5. During photooxidation G-actin lost completely the ability to polymerize to the F form before all the 3-methylhistidine was destroyed.  相似文献   

13.
Isolated cytoplasmic actin of human platelet and pig liver actin, but not rabbit skeletal muscle actin, was ADP-ribosylated by botulinum C2 toxin in the presence of [32P]NAD. Tryptic digestion of the [32P]ADP-ribosylated platelet actin generated two labeled peptides: a soluble peptide covering residues 174-183 and an insoluble fragment containing residues 148-183. Further digestion of these two peptides with thermolysin yielded the same radioactive peptide, which was in both cases peptide 175-177. Amino acid sequence analysis of peptides 174-183 and 175-177 located the ADP-ribosylation on Arg177.  相似文献   

14.
Calcitonin gene-related peptide (CGRP) is a neuropeptide present around vasculature very early during development, when smooth muscle cells (SMC) are still proliferating and not yet totally differentiated. We investigated the effects of CGRP on proliferation and differentiation of SMC in culture; 10(-7) M CGRP added in the medium of cultured smooth muscle cells every 2 days did not significantly changed cells growth rate in 1% FCS. At the opposite, this treatment modulated proliferation of cells grown in 10% FCS medium. Two distinct populations of SMC with different growth rates were obtained from our primary cultures. SMC which proliferated slowly in the presence of 10% fetal calf serum (FCS) had growth rates positively influenced by CGRP. The quantity of alpha-smooth actin expressed by these cells was not influenced by the peptide. On the contrary, SMC which proliferated more rapidly in 10% FCS medium had growth rate inhibited by CGRP. In these cells, CGRP significantly reduced the amount of expressed alpha-smooth actin, an index of SMC differentiation. In both cases, the peptide significantly increased the level of mRNA for all the actin genes. In the light of this dual role of CGRP, it can be presumed that this peptide controls smooth muscle cells proliferation and differentiation in vivo and could thus regulate the homeostasis of the vessel wall.  相似文献   

15.
Vinculin localizes to membrane adhesion junctions where it links actin filaments to the extracellular matrix by binding to the integrin-binding protein talin at its head domain (Vh) and to actin filaments at its tail domain (Vt). Vinculin can assume an inactive (closed) conformation in which Vh and Vt bind to each other, masking the binding sites for actin and talin, and an active (open) conformation in which the binding sites for talin and actin are exposed. We hypothesized that the contractile activation of smooth muscle tissues might regulate the activation of vinculin and thereby contribute to the regulation of contractile tension. Stimulation of tracheal smooth muscle tissues with acetylcholine (ACh) induced the recruitment of vinculin to cell membrane and its interaction with talin and increased the phosphorylation of membrane-localized vinculin at the C-terminal Tyr-1065. Expression of recombinant vinculin head domain peptide (Vh) in smooth muscle tissues, but not the talin-binding deficient mutant head domain, VhA50I, inhibited the ACh-induced recruitment of endogenous vinculin to the membrane and the interaction of vinculin with talin and also inhibited vinculin phosphorylation. Expression of Vh peptide also inhibited ACh-induced smooth muscle contraction and inhibited ACh-induced actin polymerization; however, it did not affect myosin light chain phosphorylation, which is necessary for cross-bridge cycling. Inactivation of RhoA inhibited vinculin activation in response to ACh. We conclude that ACh stimulation regulates vinculin activation in tracheal smooth muscle via RhoA and that vinculin activation contributes to the regulation of active tension by facilitating connections between actin filaments and talin-integrin adhesion complexes and by mediating the initiation of actin polymerization.  相似文献   

16.
Here, we report on the structure and in situ location of arthrin (monoubiquitinated actin). Labelling of insect muscle thin filaments with a ubiquitin antibody reveals that every seventh subunit along the filament long-pitch helices is ubiquitinated. A three-dimensional reconstruction of frozen-hydrated arthrin filaments was produced. This was based on a novel algorithm that divides filament images into short segments that are used for single-particle image processing. Difference maps with an actin filament reconstruction locate ubiquitin at the side of actin sub-domain 1 opposite where myosin binds. Consistent with the reconstructions, peptide mapping places the ubiquitin linkage on lysine 118 in actin. Molecular modelling was used to generate arthrin monomers from ubiquitin and actin crystal structures. Filament models constructed from these monomers were compared with the arthrin reconstruction. The reconstruction suggests ubiquitin attached to Lys118 adopts one or a few conformers, stabilized by a small interface with actin. The function of actin ubiquitination is not known, but may involve regulation of muscle contractile activity.  相似文献   

17.
A mAb (1E5) that binds the COOH-terminal region of the beta subunit of chicken CapZ inhibits the ability of CapZ to bind the barbed ends of actin filaments and nucleate actin polymerization. CapZ prepared as fusion proteins in bacteria or nonfusion proteins by in vitro translation has activity similar to that of CapZ purified from muscle. Deletion of the COOH-terminus of the beta subunit of CapZ leads to a loss of CapZ's ability to bind the barbed ends of actin filaments. A peptide corresponding to the COOH-terminal region of CapZ beta, expressed as a fusion protein, binds actin monomers. The mAb 1E5 also inhibits the binding of this peptide to actin. These results suggest that the COOH-terminal region of the beta subunit of CapZ is an actin-binding site. The primary structure of this region is not similar to that of potential actin-binding sites identified in other proteins. In addition, the primary structure of this region is not conserved across species.  相似文献   

18.
Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation.  相似文献   

19.
Chicken muscle and fibroblast actin structure.   总被引:2,自引:2,他引:0       下载免费PDF全文
Double labelling and the isolation of peptides specific to muscle actin indicates that completely homologous 20-residue peptides can be produced from the C-terminal regions of muscle and chicken-embryo fibroblast actins by treatment with CNBr. By quantification of the amount of this peptide that can be produced from acetone-dried powders by CNBr treatment, 6.8% of the protein of the fibroblasts has been estimated to be actin.  相似文献   

20.
Protein kinase C (PKC) zeta has been implicated in insulin-induced glucose uptake in skeletal muscle cell, although the underlying mechanism remains unknown. In this study, we investigated the effect of PKCzeta on actin remodeling and glucose transport in differentiated rat L6 muscle cells expressing myc-tagged glucose transporter 4 (GLUT4). On insulin stimulation, PKCzeta translocated from low-density microsomes to plasma membrane accompanied by increase in GLUT4 translocation and glucose uptake. Z-scan confocal microscopy revealed a spatial colocalization of relocated PKCzeta with the small GTPase Rac-1, actin, and GLUT4 after insulin stimulation. The insulin-mediated colocalization, PKCzeta distribution, GLUT4 translocation, and glucose uptake were inhibited by wortmannin and cell-permeable PKCzeta pseudosubstrate peptide. In stable transfected cells, overexpression of PKCzeta caused an insulin-like effect on actin remodeling accompanied by a 2.1-fold increase in GLUT4 translocation and 1.7-fold increase in glucose uptake in the absence of insulin. The effects of PKCzeta overexpression were abolished by cell-permeable PKCzeta pseudosubstrate peptide, but not wortmannin. Transient transfection of constitutively active Rac-1 recruited PKCzeta to new structures resembling actin remodeling, whereas dominant negative Rac-1 prevented the insulin-mediated PKCzeta translocation. Together, these results suggest that PKCzeta mediates insulin effect on glucose transport through actin remodeling in muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号