首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yunnanopilia longistaminea (W.Z. Li) C.Y. Wu & D.Z. Li, which is a controversial species in Opiliaceae, is treated as a variety of Champereia manillana (Blume) Merrill in the Flora of China and morphological analysis has produced conflicting results regarding its affinity to Melientha and Champereia. To determine the systematic position of Yunnanopilia in Opiliaceae, we selected two nuclear regions (internal transcribed spacer [ITS4‐ITS5] and 18S rDNA) and four chloroplast regions (rbcL, matK, psbAtrnH, and trnStrnG) to test the phylogenetics of the family Opiliaceae using maximum likelihood and Bayesian inference analysis. Morphological characteristics were also examined to clarify the similarities and differences among Y. longistaminea and two closely related species. Agonandra was located at the basal position in the family Opiliaceae; in the large clade including other remaining genera, two main clades were clearly identified and correlated with inflorescence morphological characteristics. All samples of Y. longistaminea formed a clade. Yunnanopilia, Melientha, and Champereia were more closely related than other genera of Opiliaceae. Yunnanopilia longistaminea was sister to M. suavis Pierre and was more closely related to M. suavis than to C. manillana. Morphological analysis also showed that differences in the inflorescences and flowers between Y. longistaminea and M. suavis were substantial enough to warrant the retention of Y. longistaminea in its current genus. Thus, we suggest that the monotypic Yunnanopilia be treated as a distinct genus and that the name Y. longistaminea should be adopted.  相似文献   

2.
Gastrolobium (Fabaceae: Mirbelieae) is an endemic Australian genus that produces toxic sodium monofluoroacetate. A phylogenetic reconstruction of Gastrolobium and the related genera Brachysema, Callistachys, Jansonia, Nemcia, Oxylobium, and Podolobium is presented, using sequence data from three regions-the psbA-trnH intergenic spacer and the trnK 5' intron from chloroplast DNA and the 3' end of the external transcribed spacer (ETS) from nuclear ribosomal DNA. Gastrolobium is shown to be paraphyletic, with Brachysema, Jansonia, Nemcia, and Oxylobium lineare nesting within it, and Nemcia is shown to be polyphyletic within Gastrolobium. Past key morphological characters, such as fluoroacetate content and characters associated with pollination syndrome, are shown to be homoplastic, with fluoroacetate possibly a plesiomorphic condition lost in more derived species. Podolobium is also shown to be polyphyletic, with the P. ilicifolium group sister to Gastrolobium and the P. alpestre group sister to Callistachys, a member of the Oxylobium group. It is recommended that Gastrolobium be expanded to include Brachysema, Jansonia, Nemcia, and Oxylobium lineare, while further work is required to test the sister-group relationship between Podolobium s.s. (sensu stricto) and Gastrolobium.  相似文献   

3.
Based on the sequence analysis of 5.8S subunit and internal transcribed spacers (ITS) of ribosomal RNA gene (rDNA), the molecular phylogenetic tree of representative species of Pipizini and three groups of Syrphidae with different feeding habits (seven species belong to six genera) was constructed. Meanwhile, the phylogenetic tree of tribes (including Pipizini and other 17 tribes of Syrphidae) was constructed using morphological characteristics of adults and larvae and the number of chromosomes. Both the results show that the relationship between Pipizini and predatory groups is closer than that between Pipizini and saprophagous groups. So it is suggested that Pipizini be transferred from Milesiinae to Syrphinae.  相似文献   

4.
Based on the sequence analysis of 5.8S subunit and internal transcribed spacers (ITS ) of ribosomal RNA gene (rDNA), the molecular phylogenetic tree of representative species of Pipizini and three groups of Syrphidae with different feeding habits (seven species belong to six genera) was constructed. Meanwhile, the phylogenetic tree of tribes (including Pipizini and other 17 tribes of Syrphidae) was constructed using morphological characteristics of adults and larvae and the number of chromosomes. Both the results show that the relationship between Pipizini and predatory groups is closer than that between Pipizini and saprophagous groups. So it is suggested that Pipizini be transferred from Milesiinae to Syrphinae.  相似文献   

5.
The limits and difficulties related to the tools currently in use for palaeosynecological comparisons of faunas or floras of different geological periods are discussed. The new method of the Wagner parsimony Applied to Palaeosynecology Using Morphology (WAPUM method), is defined and tested on morphological characters gathered from two insect groups Odonatoptera and Thripida. The difficulties related to the monophyly of the taxonomic groups used in the more traditional approaches are no longer a problem when using the WAPUM method. In the WAPUM a character is ‘presence versus absence of species bearing a morphological structure’. The results obtained from use of the WAPUM minimize the number of changes among character states. Application of the WAPUM could reveal signals to confirm or object the currently available scenarios for the global changes in the evolution of past diversity and disparity of organisms (major changes or global crises of diversity).  相似文献   

6.
Based on the sequence analysis of 5.8S subunit and internal transcribed spacers (ITS ) of ribosomal RNA gene (rDNA), the molecular phylogenetic tree of representative species of Pipizini and three groups of Syrphidae with different feeding habits (seven species belong to six genera) was constructed. Meanwhile, the phylogenetic tree of tribes (including Pipizini and other 17 tribes of Syrphidae) was constructed using morphological characteristics of adults and larvae and the number of chromosomes. Both the results show that the relationship between Pipizini and predatory groups is closer than that between Pipizini and saprophagous groups. So it is suggested that Pipizini be transferred from Milesiinae to Syrphinae.  相似文献   

7.
Generic boundaries among the genera Cheilosporum, Haliptilon, and Jania—currently referred to the tribe Janieae (Corallinaceae, Corallinales, Rhodophyta)—were reassessed. Phylogenetic relationships among 42 corallinoidean taxa were determined based on 26 anatomical characters and nuclear SSU rDNA sequence data for 11 species (with two duplicate plants) referred to the tribe Corallineae and 15 species referred to the tribe Janieae (two species of Cheilosporum, seven of Haliptilon, and six of Jania, with five duplicate plants). Results from our approach were consistent with the hypothesis that the tribe Janieae is monophyletic. Our data indicate, however, that Jania and Haliptilon as currently delimited are not monophyletic, and that Cheilosporum should not be recognized as an independent genus within the Janieae. Our data resolved two well‐supported biogeographic clades for the included Janieae, an Indian‐Pacific clade and a temperate North Atlantic clade. Among anatomical characters, reproductive structures reflected the evolution of the Janieae. Based on our results, three genera, Cheilosporum, Haliptilon, and Jania, should be merged into a single genus, with Jania having nomenclatural priority. We therefore propose new combinations where necessary of some species previously included in Cheilosporum and Haliptilon.  相似文献   

8.
The classification of a microsporidian parasite observed in the abdominal muscles of amphipod hosts has been repeatedly revised but still remains inconclusive. This parasite has variable spore numbers within a sporophorous vesicle and has been assigned to the genera Glugea, Pleistophora, Stempellia, and Thelohania. We used electron microscopy and molecular evidence to resolve the previous taxonomic confusion and confirm its identification as Pleistophora mulleri. The life cycle of P. mulleri is described from the freshwater amphipod host Gammarus duebeni celticus. Infection appeared as white tubular masses within the abdominal muscle of the host. Light and transmission electron microscope examination revealed the presence of an active microsporidian infection that was diffuse within the muscle block with no evidence of xenoma formation. Paucinucleate merogonial plasmodia were surrounded by an amorphous coat immediately external to the plasmalemma. The amorphous coat developed into a merontogenetic sporophorous vesicle that was present throughout sporulation. Sporogony was polysporous resulting in uninucleate spores, with a bipartite polaroplast, an anisofilar polar filament and a large posterior vacuole. SSU rDNA analysis supported the ultrastructural evidence clearly placing this parasite within the genus Pleistophora. This paper indicates that Pleistophora species are not restricted to vertebrate hosts.  相似文献   

9.
To investigate the phylogenetic and phylogeographical relationships of arvicolines, we use several Western European ground voles. More particularly, our study is focused on Microtus ( Terricola ) savii and M. ( T. ) pyrenaicus . These two allopatric species are usually considered as having originated from the same ancestor, possibly M . ( T. ) mariaclaudiae . We propose molecular and morphological approaches: nucleotidic data from the mitochondrial cytochrome b and 12S rRNA genes and global morphological analyses from the first lower molar. Four other Terricola species ( multiplex , lusitanicus , duodecimcostatus , subterraneus ) were added to the data set for both analyses, and two other vole species ( Clethrionomys glareolus and Chionomys nivalis ) as outgroup to the molecular analysis, and five fossil populations to the morphological one. Palaeontological data are also widely taken into account. Both molecular and morphological analyses indicate that intra- Terricola relationships reflect the present-day geographical distribution of our data set species. Our results show that M. ( T. ) savii and M. ( T. ) pyrenaicus are from separate speciation events leading to two different biogeographical groups, respectively the Alpine–Italian group and the French–Iberian group, the latter being much more homogeneous. These speciation events could be related to Quaternary climatic changes, which induced southward migration, leading first to M. ( T. ) savii and second to M. ( T. ) pyrenaicus . The classical hypothesis of a geographical speciation for these two taxa from M. ( T. ) mariaclaudiae is invalid. However, the morphological data suggest a potential phylogenetic relationship between M. ( T. ) mariaclaudiae (ancestor) and M. ( T. ) pyrenaicus (descendant).  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 309–323.  相似文献   

10.
Small and silvery cyprinid species from eastern Iran which are usually known as Crossocheilus latius are reviewed based on morphological and molecular characters of the mtDNA COI barcode region. We demonstrate that fishes which had been identified as Crossocheilus Kuhl & van Hasselt, 1823 in Iran actually belong to the genus Gonorhynchus McClelland, 1838 with two species: G. adiscus (Annandale, 1919) and G. diplochilus (Heckel, 1838), which are rediagnosed here. Both species are well distinguished by gill raker counts, number of scales between anus and anal fin, barbel size and minimum body depth. G. adiscus and G. diplochilus are also distinguished by molecular characters of the mtDNA COI barcode region. Both species are phylogenetically close to Gonorhynchus latius (Hamilton, 1822) which is restricted to India, Nepal and Bangladesh and to G. burmanicus (Hora, 1936), restricted to India and Myanmar. All of these four related taxa are phylogenetically closer to the genus Garra than the genus Crossocheilus (restricted to south-east Asia).  相似文献   

11.
The taxonomy of the siliceous members of Dictyochales has been based exclusively on the structure of their silica skeletons. In this study, other morphological, ultrastructural, pigment and molecular characters, in addition to the silica skeletons, were used in the systematics of the siliceous members of this group. As very little is known about the ultrastructure of Dictyocha octonaria, cells of both the skeleton‐bearing and naked forms were also studied. A cladistic analysis based on morphological data and a molecular phylogeny based on nuclear coded small subunit ribosomal DNA retrieved a well‐supported monophyletic Dictyochales. D. octonaria and D. speculum were resolved together with strong support. There was no support for a clade for the three species currently placed in Dictyocha; D. fibula is clearly distinct from the other two Dictyocha taxa, D. speculum and D. octonaria. It is highly likely there are two or three undescribed species within D. octonaria/D. speculum clade and two undescribed genera within the Dictyochales, based on the positions of sequences from uncultured eukaryotes present in GenBank. These findings necessitate a taxonomic revision of the three siliceous, skeleton‐bearing species. Because D. fibula is the type species of Dictyocha, we propose that D. octonaria and D. speculum be reassigned respectively to the genus Octactis as O. octonaria Hovasse and O. speculum (Ehrenberg) F. H. Chang, J. M. Grieve & J. E. Sutherland, comb. nov.  相似文献   

12.
Two morphologically distinct forms of an undescribed madtom catfish (Noturus sp.) occur in the rivers and lakes of southeastern USA. 'Lake' broadtail madtoms are endemic to Lake Waccamaw and are probably related to nearby 'river' broadtail populations. To investigate phylogenetic relationships, we surveyed mitochondrial DNA (mtDNA) sequence variation in 'lake' and 'river' broadtails and other members of the genus Noturus. Mitochondrial rDNA data suggest a sister group relationship between broadtail madtoms and N. insignis, not N. leptacanthus as posited previously. Population-level analyses using additional mtDNA characters (NADH dehydrogenase subunit 2 (ND2) and cytochrome b (Cytb)) identified two highly divergent genetic lineages within broadtail madtoms that do not correspond to the morphological designations 'river' and 'lake'.  相似文献   

13.
Recent molecular sequencing results involving multiple genes require evaluation in the light of preexisting morphological data, particularly as different methodologies and genes produce trees that are incongruent in some respects or have major areas with poorly supported branch resolution. The present paper summarizes the current situation, primarily from a morphologist's perspective. Most of the tabulation‐based groups are coherent in small subunit (SSU) and large subunit (LSD) trees; but some, notably the prorocentroids and peridinioids, are not. In prorocen‐troids this is primarily because of intrinsic inadequacies of the molecules to resolve their phylogeny. In peridinioids it seems to be because of paraphyly of the group. Other artefacts are noted, such as the drastically different positions of Oxyrrhis in phylogenetic trees based on SSU and protein genes, and of Noctiluca in SSU trees that include analyses with different numbers of nucleotides. Polyphyly in non‐tabulate or poorly known groups has been confirmed, as has been the presence of cryptic thecae in members of those groups (group misattribution). Whether or not some extant groups of athecate, wholly dinokaryotic forms originated prior to polytabulate groups, like the suessioids, peridinioids and gonyaula‐coids, remains unclear. Gymnodinioids with a spiral acrobase seem to have given rise to the more complex athecate forms, whereas morphological features of the genus Gymnodinium are consistent with it being a sister group to polytabulate taxa such as Woloszynskia and the suessioids. Peridinioids and gonyaulacoids appear to have originated after that split. Dinophysoid and prorocentroid dinoflagellates appear to be derived from peridinioid forms. Trees based on protein genes, such as actin or α‐ and β‐tubulin, may help resolve some of the positions of key groups, but they do not include enough taxa to be widely useful as yet.  相似文献   

14.
The ordinal level phylogeny of the Arachnida and the suprafamilial level phylogeny of the Opiliones were studied on the basis of a combined analysis of 253 morphological characters, the complete sequence of the 18S rRNA gene, and the D3 region of the 28S rRNA gene. Molecular data were collected for 63 terminal taxa. Morphological data were collected for 35 exemplar taxa of Opiliones, but groundplans were applied to some of the remaining chelicerate groups. Six extinct terminals, including Paleozoic scorpions, are scored for morphological characters. The data were analyzed using strict parsimony for the morphological data matrix and via direct optimization for the molecular and combined data matrices. A sensitivity analysis of 15 parameter sets was undertaken, and character congruence was used as the optimality criterion to choose among competing hypotheses. The results obtained are unstable for the high-level chelicerate relationships (except for Tetrapulmonata, Pedipalpi, and Camarostomata), and the sister group of the Opiliones is not clearly established, although the monophyly of Dromopoda is supported under many parameter sets. However, the internal phylogeny of the Opiliones is robust to parameter choice and allows the discarding of previous hypotheses of opilionid phylogeny such as the "Cyphopalpatores" or "Palpatores." The topology obtained is congruent with the previous hypothesis of "Palpatores" paraphyly as follows: (Cyphophthalmi (Eupnoi (Dyspnoi + Laniatores))). Resolution within the Eupnoi, Dyspnoi, and Laniatores (the latter two united as Dyspnolaniatores nov.) is also stable to the superfamily level, permitting a new classification system for the Opiliones.  相似文献   

15.
A phylogenetic study of the Eurytominae (Hymenoptera: Chalcidoidea) treating 178 taxa and based on 150 morphological characters is given. Several cladograms using the complete species sample, but obtained with different weightings, are presented. Local studies were also carried out to provide possible alternate topologies. The deep nodes of the trees were unstable and were never supported, but most of the superficial nodes were stable and robust. The results therefore provide support for a generic classification of the subfamily. The large genus Eurytoma– which includes about half of the described species of the subfamily – proved to be polyphyletic, and is redefined in a narrowed sense using putative synapomorphies. Bruchophagus and Prodecatoma were similarly redefined. The genera Philolema and Aximopsis are reconsidered and defined in a broader concept. A number of the species presently included in Eurytoma were transferred to these genera. Finally, 22 new generic synonymies are proposed and 33 species are transferred. The study also demonstrates that the Eurytomidae are polyphyletic. The results strongly support a sister‐group relationship between the Heimbrinae and the Chalcididae. The Rileyinae consist of two groups of unrelated taxa. A redefinition of the subfamily in a more restricted sense is supported by our results. The remaining group, consisting of the traditional Rileyinae, is included in the subfamily Buresiinae. Considered in this way they comprise the genera Buresium and Macrorileya, the latter being a senior synonym of Archirileya. The Buresiinae appear as the sister group of the Eurytominae. We propose to restrict the family Eurytomidae to these two taxa. This sister‐group relationship provides evidence to polarize the biological habits within Eurytominae. The common ancestor of Buresiinae is presumed to parasitize insects (mostly at the egg stage) living in grass stems. © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society, 2007, 151 , 441–510.  相似文献   

16.
A phylogenetic analysis was carried out to clarify the systematic position of Gyrocheilos and Didymocarpus, particularly the species placed in Didymocarpus sect.Heteroboea by Wang et al. Based on sequencing the internal transcribed spacer and the chloroplast spacer trnL-F, parsimony and Bayesian inference analyses were carried out using separate nuclear and chloroplast datasets, as well as a combined dataset. Our results showed that the two sections of Didymocarpus in China andGyrocheilos did not form separate monophyletic subclades, but turned up in three different places in the phylogenetic trees. In the frame of the present study, the pollen morphology of the species included in the analysis was studied. It proved inconsistent with the delimitation between Didymocarpus and Gyrocheilos. Furthermore, pollen and other morphological characters indicate that Gyrocheilos and some taxa of Didymocarpus should be placed within Didymocarpus.  相似文献   

17.
武英达  员瑗 《菌物学报》2020,39(2):256-264
结合形态学特征和分子序列分析发现采自内蒙古自治区和黑龙江省兴安落叶松树上一新种——蒙古锈迷孔菌,对此种进行了形态描述和特征图示,并讨论了该新种与其近缘种之间的异同。  相似文献   

18.
Mapped cpDNA restriction site characters were analyzed cladistically and the resulting phylogenetic hypotheses were used to test monophyly and relationships of the infrageneric classification of Lathyrus (Fabaceae) proposed by Kupicha (1983, Notes from the Royal Botanic Garden Edinburgh 41: 209-244). The validity of previously proposed classification systems and questions presented by these classification schemes were explored. Two cpDNA regions, rpoC (rpoC1, its intron, part of rpoC2, and their intergenic spacer) and IR- (psbA, trnH-GUG, part of ndhF, and their intergenic spacers), were analyzed for 42 Lathyrus and two Vicia species. PCR (polymerase chain reaction) amplified rpoC and IR- products digested with 31 and 27 restriction endonucleases, respectively, resulted in 109 potentially informative characters. The strict consensus tree suggests that several of Kupicha's sections may be combined in order to constitute clades. The widespread section Orobus and the South American section Notolathyrus should be combined. Section Lathyrus, characterized by a twisted style, should either include sections Orobon and Orobastrum or be redefined as three sections, one of which is characterized by a 100 base pair deletion in the IR- region. Finally, a weighted parsimony analysis positions sections Clymenum (excluding L. gloeospermus) and Nissolia, both with phyllodic leaves, as sister sections. The affiliation of Lathyrus gloeospermus (section Clymenum) remains problematic.  相似文献   

19.
Sparassis miniensis, collected in Pinus pinaster forests in Galicia (northwest Iberian Peninsula) is described as a new species, based on morphological and molecular data. Sparassis miniensis is morphologically distinct from all other species in the genus Sparassis based on scattered flabellae, which are strongly laciniated, azonate, and arise from an orange to rose-purplish base. The sporadic presence of clamp connections is restricted to subhymenial hyphae. Molecular data from LSU-rDNA, ITS and partial gene coding RNA polymerase subunit II (rpb2) suggest a close relationship between the new species S. miniensis and S. brevipes, another European species producing large fruiting bodies but with entire flabellae and no clamp connections.  相似文献   

20.
Morphological (including ultrastructural) and developmental characters utilized in recent literature are critically reviewed as the basis to reassess the phylogenetic relationships of gastropods. The purpose of this paper is to provide a framework of characters for future studies and a testable phylogenetic hypothesis. This is one of the first attempts to use such characters to assess the relationships of all major clades using parsimony methods. The analysis uses 117 characters and includes 40 taxa, predominantly ‘prosobranchs’. Five outgroup taxa are included, representing four conchiferan groups and Poly-placophora. Of the 117 characters reviewed and included in the analyses, nine are shell characters (four of these are shell structure), two opercular, two muscular, four ctenidial, 12 renopericardial and 24 reproductive (including 17 based on sperm and spermatogenesis), 27 of the digestive system, 32 of the nervous system and sense organs; the remainder are developmental (3) and of the foot and hypobranchial gland. In the initial analysis the data set included a mixture of binary and multistate characters with all characters unordered. These data were also analysed after scaling so that each character had equal weight. A third data set was constructed in which all characters were coded as binary characters. These analyses resulted in some implausible character transformations, mainly-involving the regaining of lost pallial structures. Additional analyses were run on all three sets of data after removing five characters showing the most unlikely transformations. These analyses resulted in generally similar topologies. The robustness of the clades was tested using clade decay. The adaptive radiation of gastropods and their life history traits are briefly described and discussed and the terminology for simultaneous hermaphroditism refined. A scenario for the evolution of torsion equated with the fossil record is proposed and the effects of torsion and coiling on gastropods are discussed along with asymmetry imposed by limpet-shaped body forms. It is suggested that the first gastropods were ultradextral. The idea that heterochrony has played a major part in gastropod evolution is developed and discussed, particularly the paedomorphic stamp imposed on the apogastropods. The veliger larvae of caenogastropods and heterobranchs are contrasted and found to differ in many respects. The evolution of planktotrophy within gastropods is discussed. Recent phylogenetic hypotheses for gastropods based on molecular data are generally in broad agreement with the present results. On the basis of our analyses we discuss the major monophyletic groups within gastropods. Gastropods appear to be a monophyletic clade, and divide into two primary groups, the Eogastropoda (incorporating the patellogastropods and their (probably sinistrally coiled) ancestors and the Orthogastropoda – the remainder of the gastropods. Orthogastropoda comprises several well defined clades. The vetigastropod clade encompasses most of the groups previously included in the paraphyletic Archaeogastropoda (fissurellids, trochoideans, scissurelloideans, halioroideans pleurotomarioideans) as well as lepeto-driloidean and lepetelloidean limpets and seguenzids. The location of the hot vent taxa Peltospiridae and Neomphalidae varies with each analysis, probably because there is a lack of ultrastructural data for these taxa and parallelism in many characters. They either form a paraphyletic or monophyletic group at or near the base of the vetigastropods or a clade with the neritopsines and cocculinoideans. The neritopsines (Neritoidea etc.) consistently form a clade with the cocculinoidean limpets, but their position on the tree also differs depending on the data set used and (in the case of the scaled data) whether or not the full suite of characters is used. They are either the sister to the rest of the orthogastropods or to the apogastropods. Caenogastropods [Mesogastropoda (+ architaenioglossan groups) + Neogastropoda] are consistently monophyletic as are the heterobranchs (‘Heterostropha’+ Opisthobranchia + Pulmo-nata). The caenogastropods and heterobranchs also form a clade in all the analyses and the name Apogastropoda is redefined to encompass this group. New taxa are proposed, Sorbeoconcha for the caenogastropods exclusive of the architaenioglossan taxa, and Hypsogastropoda for the ‘higher caenogastropods“– the Sorbeoconcha exclusive of the Cerithioidea and Campaniloidea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号