首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
肌源干细胞可塑性研究进展   总被引:1,自引:0,他引:1  
目前已证实肌肉中至少存在两种干细胞:肌卫星细胞和肌源干细胞。肌源干细胞被认为是卫星细胞的前体细胞,具有较高的增殖能力、更好的细胞生存能力和更宽的分化能力。肌源干细胞不仅能够分化成血、肌肉、脂肪、骨、软骨、内皮等中胚层细胞,而且也能打破胚层限制分化成外胚层和内胚层细胞。文章对肌源干细胞的分离纯化、鉴定、可塑性及临床应用做一综述。  相似文献   

2.
肌源干细胞研究进展   总被引:1,自引:0,他引:1  
目前已证实肌肉是具有多向分化潜能的成体干细胞的一个储存库。研究者认为骨骼肌中至少有两种干细胞:肌卫星细胞(muscle satellite cells)和肌源干细胞(muscle-derived stem cells, MDSCs),并且使用几种方法从肌肉中分离获得不同类群的MDSCs。研究发现分离这些细胞的方法影响干细胞的特征。本文对MDSCs的行为、生物学特征、分离、分化及其在治疗组织器官修复和再生中应用的可能性等作一概括介绍。  相似文献   

3.
杜氏肌营养不良症(duchenne muscular dystrophy, DMD)是一种X连锁隐性遗传病,能够导致严重的肌肉变性,和严重的肌营养不良症,表现出骨骼肌纤维的严重进行性退化,并导致患者死亡。本研究通过使用几种不同的方案研究了hDPSCs和hAPSCs向骨骼肌成肌谱系分化的潜力,以确定实现成肌承诺的最佳条件。同时为了验证h DPSCs和hAPSCs向骨骼肌成肌谱系的有效分化。我们研究了肌肉特异性因子和标记物的表达,包括肌生成素,肌球蛋白重链(MyHC)等。本研究通过使用几种不同的方案研究了hDPSCs和hAPSCs向骨骼肌成肌谱系分化的潜力,以确定实现成肌承诺的最佳条件。同时为了验证hDPSCs和hAPSCs向骨骼肌成肌谱系的有效分化,我们研究了肌肉特异性因子和标记物的表达,包括肌生成素,肌球蛋白重链(MyHC)等。本研究结果显示,植入mdx/SCID小鼠宿主肌肉中的两种细胞群都通过旁分泌作用促进了血管生成并减少了纤维化,最终导致营养不良性肌肉的组织病理学改善。因此本研究认为hAPSCs和hDPSCs代表干细胞的潜在来源的翻译策略,以提高组织病理学和潜在的缓解DMD患者的肌肉无力。  相似文献   

4.
《生物学通报》2009,44(1):5-5
肌肉卫星细胞是肌肉纤维与其膜鞘之间的空间中的静止细胞,在那里它们通过形成与肌肉纤维融合的先驱细胞来对损伤作出反应。有研究报告说,它们能充当干细胞,但卫星细胞群的混合性质意味着.它们的干细胞身份难以证明。Saceo等人通过利用克隆分析证实卫星细胞的确是干细胞、能够自我更新,从而澄清了相关问题。  相似文献   

5.
干细胞是目前生命科学研究的热点方向。干细胞具有自我更新及定向分化的潜在能力。近年来,干细胞移植治疗在治疗压力性尿失禁和膀胱损伤方面已成为研究重点,不同来源的干细胞在治疗膀胱损伤已取得瞩目的研究成果。干细胞对阴茎勃起神经和海绵体血管内皮细胞起着修复保护作用。干细胞具有向多种谱系细胞转化的能力来治疗压力性尿失禁。干细胞移植为泌尿系统的神经肌肉疾病的修复重建提供了一条新途径,使认为不可修复的的神经肌肉疾病的结构修复和组织重建成为可能。干细胞包括脂肪干细胞(adipose-derived stem cells,ADSCs)、骨髓间充质干细胞(bone narrow mesenchymal stem,BMSCs)和肌源性干细胞(muscle-derived stem cell,MDSCs)等。组织工程学是一类交叉学科,主要包括综合细胞培养、材料构建和细胞种植等。组织工程技术为泌尿外科临床医师提供了一条修复乃至重建受损脏器的新思路。本文就利用干细胞作为种子细胞,对膀胱缺损、压力性尿失禁、勃起功能障碍泌尿系疾病的组织工程修复进行综述。  相似文献   

6.
骨骼肌良好的再生能力是由于肌卫星细胞的存在,然而肌卫星细胞的数量仅占骨骼肌细胞数量的1%~ 5%,当肌肉损伤时,仅依靠这些卫星细胞还不足以促进骨骼肌修复与再生,并且这种再生能力会随着年龄的增大而衰减,并不能修复损伤严重的骨骼肌。骨髓间充质干细胞(BMSC)因其多向分化潜能,旁分泌潜能,免疫调节能力及容易获取等特点广泛用于损伤骨骼肌的修复与再生。但在某种程度上,仅仅采用BMSC治疗损伤的骨骼肌仍不能达到满意的效果。因此,大量研究采用药物、生物材料、细胞及细胞因子对BMSC进行预处理不仅可改善它的移植率,还可显著促进其向骨骼肌分化,从而最大限度的发掘骨骼肌间充质干细胞的成肌分化潜能以促进骨骼肌的修复。因此,本篇综述旨在概括BMSC成肌分化在骨骼肌再生中的应用。  相似文献   

7.
成体干细胞研究中,SP细胞是近年来在多种不同种属的哺乳动物组织中被发现的细胞群体,是另一类主要在骨髓和肌肉中发现的多潜能干细胞,具有向不同于本身起源组织的多种细胞类型分化的能力。它们数目较少,且分布、分化、表面标志和功能等都不是十分清楚。综述了SP细胞的命名,分离获取方法,多种组织细胞中SP细胞群的表面标志、分化特征。此外,SP细胞表型的基因调控,SP细胞在干细胞移植尤其是在未来临床治疗方面的应用。最后,对SP细胞的研究进行了展望。  相似文献   

8.
目的:口腔鳞癌是口腔颌面部常见的恶性肿瘤之一,本研究以侧群细胞为肿瘤干细胞突破口,通过检测、分选口腔鳞癌细胞系NTCR中侧群细胞(side population,SP)细胞亚群,深入研究不同细胞亚群的体内、外相关生物学特性,寻找口腔鳞癌中肿瘤干细胞存在的证据。方法:选取口腔鳞癌细胞系NTCR作为研究对象,Hoechst 33342染色后行流式细胞仪检测,分选口腔鳞状细胞癌中的SP细胞和非SP细胞,进行体外培养、长期分化和体内成瘤实验,对2种亚群细胞的体内和体外生物学特性进行检测和比较。结果:口腔鳞状细胞癌细胞系NTCR中含有9.3%SP细胞,其SP细胞在细胞的增殖能力、自我更新能力及裸鼠体内成瘤能力等方面与干细胞特性相似。结论:SP细胞可以认为是肿瘤干细胞的富集。进一步深入研究,有可能作为口腔鳞癌诊断、治疗和预后的靶标。  相似文献   

9.
胚胎性癌细胞(Embryonal Carcinoma,简称EC细胞)是畸胎癌的恶性干细胞,它既有恶性生长性质,又有类似于早期正常胚胎细胞的多能性,能分化为神经、皮肤、肌肉、软骨和腺管等组织。EC细胞注射到同系小鼠腹腔后,可在腹水中分化并聚积成结构类似于早期胚胎的细胞群,称为拟胚体。  相似文献   

10.
目的建立Duchenne型肌营养不良(DMD)模型dko小鼠的鉴定方法,评估干细胞移植后dystrophin的再生水平。方法采用SSP-PCR方法鉴定杂合子鼠交配产生的子代鼠的基因型。生化分析仪测定dko小鼠血浆肌酸激酶含量,HE染色观察肌肉组织学变化。扩增人脐带间充质干细胞并注射到dko小鼠后肢肌肉,2个月后免疫荧光染色法检测dystrophin的表达。结果杂合子鼠交配可以产生三个基因型的子代鼠,21.2%的子代鼠可以鉴定为dko小鼠的基因型(285 bp)。dko小鼠显示了肌营养不良的症状,血浆肌酸激酶含量高达(16,988.52±617.48)IU/L,典型的病理变化包括肌纤维大小不一,多见核中移细胞,结缔组织增生或炎性细胞浸润。将人脐带间充质干细胞注射到dko小鼠后肢肌肉,2个月后可检测到人dystrophin的表达。结论采用SSP-PCR可用于鉴定dko小鼠基因型,dko小鼠是研究干细胞治疗DMD的理想动物模型。  相似文献   

11.
Researchers have identified 2 types of stem cells in skeletal muscle: satellite cells and multipotent stem cells (MPSCs). The latter category includes different cell populations isolated by various researchers using several techniques. The methods used to isolate these cells appear to influence the stem cell characteristics of the MPSCs. Although MPSCs and satellite cells could represent different stages of maturation of the same progenitor cells, they also could represent distinct populations of stem cells that exist in skeletal muscle. This article summarizes the recent developments in muscle-derived stem cell research.  相似文献   

12.
We have shown that muscle-derived stem cells (MDSCs) transplanted into dystrophic (mdx) mice efficiently regenerate skeletal muscle. However, MDSC populations exhibit heterogeneity in marker profiles and variability in regeneration abilities. We show here that cell sex is a variable that considerably influences MDSCs' regeneration abilities. We found that the female MDSCs (F-MDSCs) regenerated skeletal muscle more efficiently. Despite using additional isolation techniques and cell cloning, we could not obtain a male subfraction with a regeneration capacity similar to that of their female counterparts. Rather than being directly hormonal or caused by host immune response, this difference in MDSCs' regeneration potential may arise from innate sex-related differences in the cells' stress responses. In comparison with F-MDSCs, male MDSCs have increased differentiation after exposure to oxidative stress induced by hydrogen peroxide, which may lead to in vivo donor cell depletion, and a proliferative advantage for F-MDSCs that eventually increases muscle regeneration. These findings should persuade researchers to report cell sex, which is a largely unexplored variable, and consider the implications of relying on cells of one sex.  相似文献   

13.
Pax7 is required for the specification of myogenic satellite cells   总被引:55,自引:0,他引:55  
  相似文献   

14.
Skeletal muscle contains at least two distinct populations of adult stem cells — satellite cells and multipotent muscle-derived stem cells. Monopotential satellite cells are located under the basal lamina of muscle fibers. They are capable of giving rise only to cells of myogenic lineage, which play an important role in the processes of muscle regeneration. Multipotent muscle-derived stem cells are considered to be predecessors of the satellite cells. Under proper conditions, both in vitro and in vivo, they undergo myogenic, cardiogenic, chondrogenic, osteogenic and adipogenic differentiation. The main purpose of the present article is to summarize current information about adult stem cells derived from skeletal muscle, and to discuss their isolation and in vitro expansion techniques, biological properties, as well as their potential for regenerative medicine.  相似文献   

15.
Myogenic specification of side population cells in skeletal muscle   总被引:34,自引:0,他引:34  
Skeletal muscle contains myogenic progenitors called satellite cells and muscle-derived stem cells that have been suggested to be pluripotent. We further investigated the differentiation potential of muscle-derived stem cells and satellite cells to elucidate relationships between these two populations of cells. FACS(R) analysis of muscle side population (SP) cells, a fraction of muscle-derived stem cells, revealed expression of hematopoietic stem cell marker Sca-1 but did not reveal expression of any satellite cell markers. Muscle SP cells were greatly enriched for cells competent to form hematopoietic colonies. Moreover, muscle SP cells with hematopoietic potential were CD45 positive. However, muscle SP cells did not differentiate into myocytes in vitro. By contrast, satellite cells gave rise to myocytes but did not express Sca-1 or CD45 and never formed hematopoietic colonies. Importantly, muscle SP cells exhibited the potential to give rise to both myocytes and satellite cells after intramuscular transplantation. In addition, muscle SP cells underwent myogenic specification after co-culture with myoblasts. Co-culture with myoblasts or forced expression of MyoD also induced muscle differentiation of muscle SP cells prepared from mice lacking Pax7 gene, an essential gene for satellite cell development. Therefore, these data document that satellite cells and muscle-derived stem cells represent distinct populations and demonstrate that muscle-derived stem cells have the potential to give rise to myogenic cells via a myocyte-mediated inductive interaction.  相似文献   

16.
Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.  相似文献   

17.
Several recent studies suggest the isolation of stem cells in skeletal muscle, but the functional properties of these muscle-derived stem cells is still unclear. In the present study, we report the purification of muscle-derived stem cells from the mdx mouse, an animal model for Duchenne muscular dystrophy. We show that enrichment of desmin(+) cells using the preplate technique from mouse primary muscle cell culture also enriches a cell population expressing CD34 and Bcl-2. The CD34(+) cells and Bcl-2(+) cells were found to reside within the basal lamina, where satellite cells are normally found. Clonal isolation and characterization from this CD34(+)Bcl-2(+) enriched population yielded a putative muscle-derived stem cell, mc13, that is capable of differentiating into both myogenic and osteogenic lineage in vitro and in vivo. The mc13 cells are c-kit and CD45 negative and express: desmin, c-met and MNF, three markers expressed in early myogenic progenitors; Flk-1, a mouse homologue of KDR recently identified in humans as a key marker in hematopoietic cells with stem cell-like characteristics; and Sca-1, a marker for both skeletal muscle and hematopoietic stem cells. Intramuscular, and more importantly, intravenous injection of mc13 cells result in muscle regeneration and partial restoration of dystrophin in mdx mice. Transplantation of mc13 cells engineered to secrete osteogenic protein differentiate in osteogenic lineage and accelerate healing of a skull defect in SCID mice. Taken together, these results suggest the isolation of a population of muscle-derived stem cells capable of improving both muscle regeneration and bone healing.  相似文献   

18.
Meng J  Adkin CF  Xu SW  Muntoni F  Morgan JE 《PloS one》2011,6(3):e17454

Background

Stem cell transplantation is a promising potential therapy for muscular dystrophies, but for this purpose, the cells need to be systemically-deliverable, give rise to many muscle fibres and functionally reconstitute the satellite cell niche in the majority of the patient''s skeletal muscles. Human skeletal muscle-derived pericytes have been shown to form muscle fibres after intra-arterial transplantation in dystrophin-deficient host mice. Our aim was to replicate and extend these promising findings.

Methodology/Principal Findings

Isolation and maintenance of human muscle derived cells (mdcs) was performed as published for human pericytes. Mdscs were characterized by immunostaining, flow cytometry and RT-PCR; also, their ability to differentiate into myotubes in vitro and into muscle fibres in vivo was assayed. Despite minor differences between human mdcs and pericytes, mdscs contributed to muscle regeneration after intra-muscular injection in mdx nu/nu mice, the CD56+ sub-population being especially myogenic. However, in contrast to human pericytes delivered intra-arterially in mdx SCID hosts, mdscs did not contribute to muscle regeneration after systemic delivery in mdx nu/nu hosts.

Conclusions/Significance

Our data complement and extend previous findings on human skeletal muscle-derived stem cells, and clearly indicate that further work is necessary to prepare pure cell populations from skeletal muscle that maintain their phenotype in culture and make a robust contribution to skeletal muscle regeneration after systemic delivery in dystrophic mouse models. Small differences in protocols, animal models or outcome measurements may be the reason for differences between our findings and previous data, but nonetheless underline the need for more detailed studies on muscle-derived stem cells and independent replication of results before use of such cells in clinical trials.  相似文献   

19.
Three populations of myogenic cells were isolated from normal mouse skeletal muscle based on their adhesion characteristics and proliferation behaviors. Although two of these populations displayed satellite cell characteristics, a third population of long-time proliferating cells expressing hematopoietic stem cell markers was also identified. This third population comprises cells that retain their phenotype for more than 30 passages with normal karyotype and can differentiate into muscle, neural, and endothelial lineages both in vitro and in vivo. In contrast to the other two populations of myogenic cells, the transplantation of the long-time proliferating cells improved the efficiency of muscle regeneration and dystrophin delivery to dystrophic muscle. The long-time proliferating cells' ability to proliferate in vivo for an extended period of time, combined with their strong capacity for self-renewal, their multipotent differentiation, and their immune-privileged behavior, reveals, at least in part, the basis for the improvement of cell transplantation. Our results suggest that this novel population of muscle-derived stem cells will significantly improve muscle cell-mediated therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号