首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work has a twofold aim: 1. To ascertain whether the stimulative influence of peripheral nerve grafts on injured hippocampal neurons depends on the time lapse after transection and; 2. To examine whether the mentioned effect runs parallel to the time-dependent changes of proteins contents and composition in the submicrosomal fraction from transected rat sciatic nerves. Fluorescence microscope examination revealed that FITC-HRP labeled cells extending their neurites into the implanted peripheral nerve segments were particularly numerous among the hippocampal neurons when 7- and 35-day-old predegenegated distal stumps were used as grafts. Discontinuous SDS-slab polyacrylamide gel electrophoresis of submicrosomal fraction proteins obtained from distal stumps of rat sciatic nerves was performed at the 7, 14, 21 and 35 days after transection. Among the obtained protein fractions the most interesting seem to be the ones of 47 and 54 kDa, which reached maximal levels at the 7th day and the 50 kDa fraction with a maximum at the 35th experimental day. It is possible that the growth promoting power of the employed grafts depends on the presence of proper proteins.  相似文献   

2.
The relationships of neurons and non-neuronal cells are vital for the maintenance and function of neurons. Trauma alters these relationships causing proliferation of non-neuronal cells and, in adult mammalian CNS, presumably disturbs the environmental support needed for regeneration. A supportive environment can be restored by introducing a regenerating nerve to injured mammalian CNS. This response is probably due, at least in part, to diffusible substances secreted by the non-neuronal cells. We have obtained diffusible substances from either regenerating fish optic nerves or neonatal rabbit optic nerves and applied them around crushed adult rabbit optic nerves. This manipulation caused the adult nerve to show regenerative changes: a general increase of protein synthesis in the retinas; selective increase in synthesis of a few polypeptides in the retinas; sprouting from the retinas in vitro; increased viability of nerve fibers as shown by HRP staining; and the appearance of growth cones adjacent to glial limitans in the injured nerves. We termed these diffusible, active substances "Growth Associated Triggering Factors" (GATFs). In addition to the phenomena described above, the active substances (obtained in the form of media conditioned by regenerating fish optic nerve or neonatal rabbit optic nerve) caused various other changes in the injured nerve itself: acceleration of non-neuronal cell proliferation; changes in the protein pattern, e.g. an increase in a 12 kDa polypeptide which might be a second mediator in the cascade of events leading to regeneration; increased laminin immunoreactive sites in the nerve; and the acquisition of growth supportive activity in media conditioned by the implanted injured nerves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
低温保存许旺细胞对周围神经再生的作用   总被引:1,自引:0,他引:1  
目的:比较原代培养许旺细胞(Schwann cells,SCs)和冷冻保存的SCs移植对损伤后坐骨神经再生的作用。方法:原代培养和液氮保存的SCs分别移植到桥接缺损坐骨神经的硅胶管内。在移植后不同时间(第6和8周末),硅胶管远端神经干内注射HRP,逆行追踪背根神经节和脊髓前角的标记神经元数量;测量再生神经纤维的复合动作电位传导速度;电镜观察再生神经纤维的髓鞘形成。结果:原代培养和冷冻保存SCs在移植后不同时间其背根神经节和脊髓前角神经元HRP标记细胞数量、再生神经纤维的复合动作电位传导速度基本一致,再生神经纤维髓鞘的形成未见明显差别。结论:冷冻保存的SCs仍具有促进损伤后周围神经再生的能力。  相似文献   

4.
Injured axons in mammalian peripheral nerves often regenerate successfully over long distances, in contrast to axons in the brain and spinal cord (CNS). Neurite growth-inhibitory proteins, including the recently cloned membrane protein Nogo-A, are enriched in the CNS, in particular in myelin. Nogo-A is not detectable in peripheral nerve myelin. Using regulated transgenic expression of Nogo-A in peripheral nerve Schwann cells, we show that axonal regeneration and functional recovery are impaired after a sciatic nerve crush. Nogo-A thus overrides the growth-permissive and -promoting effects of the lesioned peripheral nerve, demonstrating its in vivo potency as an inhibitor of axonal regeneration.  相似文献   

5.
The peripheral branch of primary sensory neurons regenerates after injury, but there is no regeneration when their central branch is severed by spinal cord injury. Here we show that microinjection of a membrane-permeable analog of cAMP in lumbar dorsal root ganglia markedly increases the regeneration of injured central sensory branches. The injured axons regrow into the spinal cord lesion, often traversing the injury site. This result mimics the effect of a conditioning peripheral nerve lesion. We also demonstrate that sensory neurons exposed to cAMP in vivo, when subsequently cultured in vitro, show enhanced growth of neurites and an ability to overcome inhibition by CNS myelin. Thus, stimulating cAMP signaling increases the intrinsic growth capacity of injured sensory axons. This approach may be useful in promoting regeneration after spinal cord injury.  相似文献   

6.
Hedgehog proteins are important in the development of the nervous system. As Desert hedgehog (Dhh) is involved in the development of peripheral nerves and is expressed in adult nerves, it may play a role in the maintenance of adult nerves and degeneration and regeneration after injury. We firstly investigated the Dhh-receptors, which are expressed in mouse adult nerves. The Dhh receptor patched(ptc)2 was detected in adult sciatic nerves using RT-PCR, however, ptc1 was undetectable under the same experimental condition. Using RT-PCR in purified cultures of mouse Schwann cells and fibroblasts, we found ptc2 mRNA in Schwann cells, and at much lower levels, in fibroblasts. By immunohistochemistry, Ptc2 protein was seen on unmyelinated nerve fibers. Then we induced crush injury to the sciatic nerves of wild-type (WT) and dhh-null mice and the distal stumps of injured nerves were analyzed morphologically at different time points and expression of dhh and related receptors was also measured by RT-PCR in WT mice. In dhh-null mice, degeneration of myelinated fibers was more severe than in WT mice. Furthermore, in regenerated nerves of dhh-null mice, minifascicular formation was even more extensive than in dhh-null intact nerves. Both dhh and ptc2 mRNA levels were down-regulated during the degenerative phase postinjury in WT mice, while levels rose again during the phase of nerve regeneration. These results suggest that the Dhh-Ptc2 signaling pathway may be involved in the maintenance of adult nerves and may be one of the factors that directly or indirectly determines the response of peripheral nerves to injury.  相似文献   

7.
Anamniote animals, such as fish and amphibians, are able to regenerate damaged CNS nerves following injury, but regeneration in the mammalian CNS tracts, such as the optic nerve, does not occur. However, severed adult mammalian retinal axons can regenerate into peripheral nerve segments grafted into the brain and this finding has emphasized the importance of the environment in explaining regenerative failure in the adult mammalian CNS. Following lesions, regenerating axons encounter the glial cells, oligodendrocytes and astro-cytes, and their derivatives, respectively myelin and the astrocytic scar. Experiments to investigate the influence of these components on axon growth in culture have revealed cell-surface and extracellular matrix molecules that inhibit axon extension and growth cone motility. Structural and functional characterization of these ligands and their receptors is underway, and may solve the interesting neurobiological conundrum posed by the failure of mammalian CNS regeneration. Simultaneously, this might allow new possibilities for treatment of the severe clinical disabilities resulting from injury to the brain and spinal cord.  相似文献   

8.

Background

Based on growing evidence that some adult multipotent cells necessary for tissue regeneration reside in the walls of blood vessels and the clinical success of vein wrapping for functional repair of nerve damage, we hypothesized that the repair of nerves via vein wrapping is mediated by cells migrating from the implanted venous grafts into the nerve bundle.

Methodology/Principal Findings

To test the hypothesis, severed femoral nerves of rats were grafted with venous grafts from animals of the opposite sex. Nerve regeneration was impaired when decellularized or irradiated venous grafts were used in comparison to untreated grafts, supporting the involvement of venous graft-derived cells in peripheral nerve repair. Donor cells bearing Y chromosomes integrated into the area of the host injured nerve and participated in remyelination and nerve regeneration. The regenerated nerve exhibited proper axonal myelination, and expressed neuronal and glial cell markers.

Conclusions/Significance

These novel findings identify the mechanism by which vein wrapping promotes nerve regeneration.  相似文献   

9.
S Neumann  C J Woolf 《Neuron》1999,23(1):83-91
Regeneration is abortive following adult mammalian CNS injury. We have investigated whether increasing the intrinsic growth state of primary sensory neurons by a conditioning peripheral nerve lesion increases regrowth of their central axons. After dorsal column lesions, all fibers stop at the injury site. Animals with a peripheral axotomy concomitant with the central lesion show axonal growth into the lesion but not into the spinal cord above the lesion. A preconditioning lesion 1 or 2 weeks prior to the dorsal column injury results in growth into the spinal cord above the lesion. In vitro, the growth capacity of DRG neurite is also increased following preconditioning lesions. The intrinsic growth state of injured neurons is, therefore, a key determinant for central regeneration.  相似文献   

10.
In contrast to the adult mammalian central nervous system (CNS), the neurons in the peripheral nervous system (PNS) can regenerate their axons. However, the underlying mechanism dictating the regeneration program after PNS injuries remains poorly understood. Combining chemical inhibitor screening with gain- and loss-of-function analyses, we identified p90 ribosomal S6 kinase 1 (RSK1) as a crucial regulator of axon regeneration in dorsal root ganglion (DRG) neurons after sciatic nerve injury (SNI). Mechanistically, RSK1 was found to preferentially regulate the synthesis of regeneration-related proteins using ribosomal profiling. Interestingly, RSK1 expression was up-regulated in injured DRG neurons, but not retinal ganglion cells (RGCs). Additionally, RSK1 overexpression enhanced phosphatase and tensin homolog (PTEN) deletion-induced axon regeneration in RGCs in the adult CNS. Our findings reveal a critical mechanism in inducing protein synthesis that promotes axon regeneration and further suggest RSK1 as a possible therapeutic target for neuronal injury repair.

This study shows that p90 ribosomal S6 kinase 1 (RSK1) responds differentially to nerve injury in the peripheral and central nervous systems, and identifies it as a crucial regulator of axonal regeneration; mechanistically, RSK1 preferentially induces the synthesis of regeneration-related proteins via the RSK1-eEF2K-eEF2 axis.  相似文献   

11.
The earliest outgrowth of nerve fibers from identified spinal neurons labeled with horseradish peroxidase (HRP) was traced along surgically rearranged pathways in the central nervous system (CNS) of Xenopus embryos. Parts of the CNS were misaligned or inverted rostrocaudally by grafting a segment of labeled spinal cord in place of the same or different spinal cord segment of an unlabeled embryo or by joining two rostral half embryos (head-to-head) or two caudal half embryos (tail-to-tail), one half of which was derived from a labeled embryo in each combination. Donor embryos were labeled by injection of HRP into a selected blastomere at the 16- or 32-cell stage. Host embryos were unlabeled. Grafts from labeled donors to unlabeled host embryos were made at early neural tube stages before outgrowth of any nerve fibers had started (Jacobson and Huang, 1985). Routes taken by labeled nerve fibers growing into unlabeled CNS were observed at later stages, and the rates of nerve fiber elongation were calculated. Labeled nerve fibers were normal in appearance, and elongated without branching, at normal rates (22-71 micron/h). In head-to-head and tail-to-tail embryos and in embryos with inverted spinal cord grafts, nerve fibers continued elongating without branching in the direction opposite to normal in the CNS. Many fibers reached lengths that were far greater than normal. No reorientation of such maldirected nerve fibers was seen. These results indicate that nerve fiber elongation is not guided by axially polarized pathway cues or markers and that nerve fibers do not grow to predetermined lengths. However, neurites preferred to grow along stereotyped nerve fiber pathways even when forced to grow in the wrong direction or when confronted with nonneural tissue.  相似文献   

12.
Our previous studies revealed that predegenerated peripheral nerve grafts facilitated neurite outgrowth from the injured hippocampus and that this effect was particularly distinct when 7-, 28-, and 35-days predegenerated nerve grafts were used. It is recently known that a totally transected peripheral nerve exhibits biphasic neurite-promoting activity. The early phase lasts 7 days. The aim of the present study was to find whether short-time predegenerated (1-6 days) peripheral nerve grafts exert any neurotrophic effect and when this influence is maximal. Experiments were carried out on adult male Wistar rats. Sciatic nerves were totally transected and following 1, 2, 3, 4, 5 and 6 days their distal stumps were implanted into the hippocampus. Control animals were treated with non-predegenerated sciatic nerve grafts. In all groups FITC-HRP was injected into the free end of graft six weeks following surgery. Special histochemic technique showed AChE-positive fibres inside the grafts of all examined groups. Fluorescence microscopic examination revealed the labeled cells in all examined groups, however their number was different in each group, depending on the predegeneration stage. They were most numerous at the fourth day of predegeneration.  相似文献   

13.
Protein synthesis in the nerve sheath of injured as well as intact mature and developing sciatic nerves from rat and rabbit was investigated by incubating segments of nerve with [35S]methionine in vitro. The composition of labeled proteins under the different conditions of nerve growth was analyzed by two-dimensional gel electrophoresis and fluorography. The expression of six secreted proteins in rat sciatic nerve with the apparent molecular weights of 70,000 (70 kD), 54,000 (54 kD), 51,000 (51 kD), 39,000 (39 kD), 37,000 (37 kD), and 30,000 (30 kD) was of particular interest because of the correlation of their synthesis and secretion with aspects of nerve growth and regeneration. The synthesis of the 37-kD protein was significantly stimulated during both sciatic nerve development as well as regeneration but not in the intact mature nerve. The expression of this protein appears to be regulated by signal(s) from the axon but not the target. The 70-kD protein was exclusively synthesized in response to axotomy, thus confining its role to some aspect(s) of nerve repair. In contrast, the 54- and 51-kD proteins were expressed in the intact mature nerve sheath. Their synthesis and release was rapidly inhibited upon axotomy but returned to normal or higher levels towards the end of sciatic nerve regeneration, suggesting a role in the maintenance of the integrity of the mature (nongrowing) rat nerve. The 39- and 30-kD proteins were only transiently synthesized within the first week after axotomy. Two proteins with the apparent molecular masses of 70 and 37 kD were synthesized in denervated rabbit sciatic nerve. The similar molecular weights, net charges, and time-courses of induction suggest a homology between these proteins in rabbit and rat, indicating common molecular responses of peripheral nerve sheath cells to axon injury in both mammalian species.  相似文献   

14.
The effects of the repair of nerve gap injuries are still unsatisfactory, despite the great progress in microsurgery. Until now, there is no effective method to induce the regeneration of the transected peripheral nerve when its distal stump is missing. The aim of this work was to examine whether the implantation of dead-ended connective tissue chambers can promote the outgrowth of injured peripheral neurites. This method differs from all previous nerve guides because it totally eliminates the distal part of the nerve and restricts the influence of surrounding tissues. We have also tried to establish whether some neurotrophic factors can be applied by means of these chambers. The results of this work show that dead-ended autologous connective tissue chambers can be a useful tool in peripheral nerve injuries treatment, even when the distal part of the nerve is missing.  相似文献   

15.
The ability of injured peripheral nerves to regenerate and reinnervate their original targets is a characteristic feature of the peripheral nervous system (PNS). On the other hand, neurons of the central nervous system (CNS), including retinal ganglion cell (RGC) axons, are incapable of spontaneous regeneration. In the adult PNS, axonal regeneration after injury depends on well-orchestrated cellular and molecular processes that comprise a highly reproducible series of degenerative reactions distal to the site of injury. During this fine-tuned process, named Wallerian degeneration, a remodeling of the distal nerve fragment prepares a permissive microenvironment that permits successful axonal regrowth originating from the proximal nerve fragment. Therefore, a multitude of adjusted intrinsic and extrinsic factors are important for surviving neurons, Schwann cells, macrophages and fibroblasts as well as endothelial cells in order to achieve successful regeneration. The aim of this review is to summarize relevant extrinsic cellular and molecular determinants of successful axonal regeneration in rodents that contribute to the regenerative microenvironment of the PNS.  相似文献   

16.
Remyelination is an important aspect of nerve regeneration after nerve injury but the underlying mechanisms are not fully understood. The neurotrophin receptor, p75(NTR), in activated Schwann cells in the Wallerian degenerated nerve is up-regulated and may play a role in the remyelination of regenerating peripheral nerves. In the present study, the role of p75(NTR) in remyelination of the sciatic nerve was investigated in p75(NTR) mutant mice. Histological results showed that the number of myelinated axons and thickness of myelin sheath in the injured sciatic nerves were reduced in mutant mice compared with wild-type mice. The myelin sheath of axons in the intact sciatic nerve of adult mutant mice is also thinner than that of wild-type mice. Real-time RT-PCR showed that mRNA levels for myelin basic protein and P0 in the injured sciatic nerves were significantly reduced in p75(NTR) mutant animals. Western blots also showed a significant reduction of P0 protein in the injured sciatic nerves of mutant animals. These results suggest that p75(NTR) is important for the myelinogenesis during the regeneration of peripheral nerves after injury.  相似文献   

17.
This protocol details a tissue culture technique that allows for quantified regeneration studies on adult retinal ganglion cells (RGCs), that is, CNS neurons. The method may also allow for elucidation of molecular cues, for example of signals relevant in neuronal survival and axon regeneration. The procedure relies on fractioned stripe culture of previously injured retina in defined culture media. Naive dendritic cell contacts of RGCs are preserved, and the system is independent of growth factors. In contrast to other techniques, the protocol is based on tissue grown from adult animals; it dispenses immature co-cultures and evaluates the outgrowth of unmyelinated neurites in a milieu lacking CNS myelin. The technique is suitable for rodent retina from mouse or rat. A growth-conditioning injury of the optic nerve is set 10 days before retinal explantation. Explants are cultured for 5-7 days. Mere preparation of a single retina should be completed within 20 min.  相似文献   

18.
The use of the visual system played a major role in the elucidation of molecular mechanisms controlling axonal regeneration in the injured CNS after trauma. In this model, CNTF was shown to be the most potent known neurotrophic factor for axonal regeneration in the injured optic nerve. To clarify the role of the downstream growth regulator Stat3, we analyzed axonal regeneration and neuronal survival after an optic nerve crush in adult mice. The infection of retinal ganglion cells with adeno-associated virus serotype 2 (AAV2) containing wild-type (Stat3-wt) or constitutively active (Stat3-ca) Stat3 cDNA promoted axonal regeneration in the injured optic nerve. Axonal growth was analyzed in whole-mounted optic nerves in three dimensions (3D) after tissue clearing. Surprisingly, with AAV2.Stat3-ca stimulation, axons elongating beyond the lesion site displayed very irregular courses, including frequent U-turns, suggesting massive directionality and guidance problems. The pharmacological blockade of ROCK, a key signaling component for myelin-associated growth inhibitors, reduced axonal U-turns and potentiated AAV2.Stat3-ca-induced regeneration. Similar results were obtained after the sustained delivery of CNTF in the axotomized retina. These results show the important role of Stat3 in the activation of the neuronal growth program for regeneration, and they reveal that axonal misguidance is a key limiting factor that can affect long-distance regeneration and target interaction after trauma in the CNS. The correction of axonal misguidance was associated with improved long-distance axon regeneration in the injured adult CNS.  相似文献   

19.
Su GH  Ye JX  You SW 《生理科学进展》2001,32(2):101-106
本综述重点阐述了移植周围神经或其组织成分雪旺细胞、成纤维细胞和神经营养因子,改善成年哺乳动物中枢神经系统抑制神经再生的微环境、增强受损神经元的内在再生潜力,以促进细胞损伤后的存活和轴突再生。  相似文献   

20.
Tropic 1808基因在大鼠损伤神经组织中的表达   总被引:1,自引:1,他引:1  
目的观察Tropic 1808基因在大鼠正常和损伤坐骨神经组织中的表达,探讨Tropic 1808基因在周围神经损伤与再生过程中的作用.方法采用地高辛标记的Tropic 1808 cDNA探针、抗大鼠S-100蛋白抗体,以原位杂交和免疫组织化学双重染色法,观察Tropic 1808基因在正常和损伤大鼠坐骨神经组织中的表达.结果免疫组化结果显示,大鼠正常坐骨神经可表达S-100蛋白,但表达量较低;神经损伤后,其远侧端S-100蛋白的表达量明显增加.原位杂交结果显示,大鼠正常坐骨神经组织未见Tropic 1808 mRNA杂交信号;损伤神经的远侧端呈现较强的阳性信号,而且在部分S-100强阳性反应区可见Tropic 1808 mRNA杂交信号.结论 Tropic 1808基因在正常坐骨神经组织中未见表达;坐骨神经损伤后,其远侧端增殖的雪旺氏细胞可表达Tropic 1808 mRNA.提示,Tropic 1808是一种周围神经损伤后特异表达的基因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号