首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NUCLEOTIDE METABOLISM IN RAT BRAIN   总被引:15,自引:7,他引:8  
Abstract— The uptake, the conversion to nucleotides, and their incorporation into RNA for labelled glycine, aspartate, the free bases and nucleosides of purines and pyrimidines were investigated with cortical slices of rat cerebrum. At the end of a 1-hr incubation time the slice-to-medium ratio of the radioactivities for labelled aspartate, glycine, adenine and adenosine were 34, 26, 20 and 5, respectively, while the slice-to-medium ratios for hypoxanthine, inosine, guanine, guanosine, xanthine, orotate, cytidine, cytosine, uridine, and uracil ranged from 1.3:1 to 2:1. Over 99 per cent of the total radioactivity taken up by the cortical slices was present in the TCA supernatant and 86, 82, 65, 50, 34, 23, 20 and 1.6 per cent of this radioactivity was in the form of nucleotides at the end of a 1-hr incubation with labelled adenine, adenosine, hypoxanthine, inosine, uridine, orotate, cytidine, and glycine, respectively. The incorporation of various radioactive precursors into RNA of cortical slices suggests that nucleotides originating from either de novo synthesis or preformed purine derivatives enter the same nucleotide pool utilized for RNA synthesis. The supernatant fraction from homogenized cerebrum was investigated for the presence of various anabolic and catabolic enzymes associated with nucleotide metabolism. These results were correlated with the data from the RNA incorporation studies, and a possible role for AMP: pyrophosphate phosphoribosyltransferase (adenine phosphoribosyltransferase, I.U.B. 2.4.2.7) to achieve intercellular transfer of AMP is discussed.  相似文献   

2.
1. Liver cells in suspension are shown to incorporate several RNA precursors into their RNA. 2. The incorporation of [32P]phosphate and [14C]adenine into the RNA of the cell suspension is usually of the same order as that in the perfused (or unperfused) liver slices. However, the initial lag in the incorporation of adenine into the RNA of the cell suspensions is much longer than that obtained for the tissue slices, and the optimum incorporation of adenine in the former, unlike that in the latter, needs exogenous glucose and probably a high concentration of phosphate. 3. The cell suspensions also differ from the tissue slices in being unable to incorporate [14C]orotic acid into their RNA, and resemble tumour tissues in incorporating uracil into their RNA at a rate significantly higher than that obtained with the tissue slices. 4. The above differences in the metabolic behaviour of liver-cell suspensions and tissue slices are considered to be due to the different levels of organization of the liver cells in the two tissue preparations.  相似文献   

3.
4.
Cyclic AMP accumulates in cerebral cortical slices from the C57B1/6J mouse incubated with the following stimulatory agents: norepinephrine, adenosine, veratridine and adenosine-biogenic amine combinations. The results with slices labelled with radioactive adenine or adenosine provide evidence for the existence of distinct functional compartments of adenine nuclcotides which serve as precursors of cyclic AMP on stimulation with specific agents. Thus, in slices labelled with [14C]adenine or [3H]adenosine the ratio of [14C] to [3H]cyclic AMP was dependent on the stimulatory agent; with veratridinc the ratio was 1.4 while with adenosine the ratio was 3.0. In addition, a greater than 2-fold difference in the ratio of endogenous/radioactive cyclic AMP was observed in adenine or adenosine-labelled slices after incubation with veratridine, norepinephrine, adenosine or adenosine-amine combinations; the lowest ratios after stimulation with veratridine and the highest after adenosine or adenosine-amine combinations. The high ratio observed with adenosine was in part due to a quite marked incorporation of the stimulant, adenosine, into the accumulating cyclic AMP. Such distinct functional compartments of cyclic AMP precursors may represent different cell types and/or morphological entities within one cell type.  相似文献   

5.
—It is generally believed that leucine serves primarily as a precursor for protein synthesis in the central nervous system. However, leucine is also oxidized to CO2 in brain. The present investigation compares leucine oxidation and incorporation into protein in brain slices and synaptosomes. In brain slices from adult rats, these processes were linear for 90min and 14CO2 production from 0·1 mm -l -[l-14C]leucine was 23 times more rapid than incorporation into protein. The rate of oxidation increased further with greater leucine concentrations. Experiments with l -[U-14C]leucine suggested that all of the carbons from leucine were oxidized to CO2 with very little incorporation into lipid. Oxidation of leucine also occurred in synaptosomes. In slices, leucine oxidation and incorporation into protein were inhibited by removal of glucose or Na+, or addition of ouabain. In synaptosomes, replacement of Na+ by choline also reduced leucine oxidation; and this effect did not appear to be due to inhibition of leucine transport. The rate of leucine oxidation did not change in brain slices prepared from fasted animals. Fasting, however, reduced the incorporation of leucine into protein in brain slices prepared from young but not from adult rats. These findings indicate that oxidation is the major metabolic fate of leucine in brain of fed and fasted animals.  相似文献   

6.
1. Chloramphenicol has a stimulatory effect on the incorporation of radioactive phosphate into the RNA of perfused rat-liver slices, whole liver homogenates or the liver-cell suspensions, and no effect on the incorporation of [(14)C]adenine and [(14)C]uracil into the RNA of the tissue slices. 2. Chloramphenicol completely inhibits the incorporation of labelled adenine and uracil into the RNA of the cell suspensions, or into the RNA of homogenates derived from the whole liver tissues. 3. Chloramphenicol has at most a slight inhibitory effect on the transport of labelled adenine or uracil in the hepatic cells in suspension; in the slices, the transport of these bases is not inhibited at all. 4. The above observations indicate that: (a) unlike the tissue slices, hepatic cells in suspension are permeable to chloramphenicol; (b) in the presence of chloramphenicol, for reasons that are not clear, the conversion of the base into the appropriate nucleotide does not proceed.  相似文献   

7.
Abstract— Ethanol administered in vivo or in vitro during incubation of brain slices was studied with respect to its effect on brain protein synthesis. In the in vivo series the rats were given a single intraperitoneal injection of ethanol 3 h before death. Slices of cerebral cortex and liver were incubated in isotonic saline media containing [3H]leucine. Amounts of free and protein-bound radioactivity were determined. Subcellular fractions and fractions enriched in neuronal perikarya and in glial cells were prepared from cortical slices subsequent to incubation, and the specific radioactivity determined for each cell type. The incorporation of [3H]leucine into brain proteins was inhibited while incorporation into liver proteins was stimulated in ethanol-treated rats. The levels of TCA-soluble radio-activity, however, did not differ between the ethanol group and the controls. In the fractionated material from cerebral cortex, the specific radioactivity in the neuronal fraction was unaffected by ethanol, while the radioactivity in the glial fraction was significantly depressed. In vitro administration of ethanol induced a non-linear response in both brain and liver, with depression of leucine incorporation into proteins of cerebral cortex at all concentrations used. When brain slices were exposed to ethanol in vitro, in concentrations corresponding to the in vivo experiments, a similar reduction of the leucine incorporation into the glial fraction was obtained. Incorporation of leucine into subcellular fractions from whole brain cortex was also investigated. The specific sensitivity of the glial fraction to ethanol is discussed in relation to the involvement of the different cell types with transport processes in the brain.  相似文献   

8.
1. Insulin is one of the hormones that are essential for successful tissue culture of explants of the mammary glands of pregnant mice. We report here effects of insulin on RNA and protein formation by mammary tissue from pregnant mice and rats incubated in tissue-culture medium 199. 2. The incorporation of [(14)C]adenine over 3hr. into the RNA of explants of the mammary glands of pregnant mice was increased by an average of 68% when the medium contained 5mug. of insulin/ml. Under similar conditions the incorporation into the RNA of slices of the glands of pregnant rats was increased by an average of 61%. Incorporation into the RNA of slices from lactating rats was stimulated to a smaller extent. 3. Adipose tissue was separated from the glands of pregnant mice and the effect of insulin on the incorporation of adenine into its RNA was studied. In whole explants the incorporation of adenine, both with and without insulin, is almost entirely into the RNA of the mammary parenchyma and not of the adipose tissue. 4. Insulin also stimulated by 38% the incorporation of [(14)C]leucine over 3hr. into the proteins of slices of the glands of pregnant rats. It had no significant effect on slices from lactating rats. 5. Actinomycin D (10mug./ml.) decreased the incorporation of [(14)C]adenine into the RNA of slices of the glands of pregnant rats by an average of 97%. Though it also decreased the incorporation of [(14)C]leucine into the proteins by an average of 25%, the percentage stimulation by insulin of this incorporation remained unchanged.  相似文献   

9.
Abstract– (1) The uptake and release of glutamic acid by guinea-pig cerebral cortex slices and rat synaptosomal fractions were studied, comparing the naturally occurring l - and non-natural d -isomers. Negligible metabolism of d -glutamic acid was observed in the slices. (2) Whereas in the cerebral slices the accumulation of glutamic acid was almost the same for the two isomers, d -glutamic acid was accumulated into the synaptosomal fraction at a markedly lower rate than was the L-isomer. (3) The uptake systems for d -isomer into the slices and synaptosomal fraction were found to be of single component, in contrast with the two component systems, high and low affinity components, for the uptake of l -glutamic acid. The apparent Km values for the uptake of d -glutamic acid into the slices and synaptosomal fraction were comparable with those reported for the low affinity components for l -isomer. The uptake systems for d -glutamic acid were dependent on the presence of Na+ ions in the medium, like those for l -glutamic acid and GABA. (4) The evoked release of radioactive preloaded d -glutamic acid was observed both from the slices and synaptosomal fraction following stimulation by high K+ ions in the medium. From these observations, it is evident that the evoked release of an amino acid by depolarization in vitro is not necessarily accompanied by a high affinity uptake process. (5) The uptake of l -glutamic acid, expecially into the synaptosomal fraction, was highly resistant to ouabain. On the other hand, the uptake rate of d -glutamic acid and GABA into the synaptosomal fraction was inhibited by varying concentrations of ouabain in accordance with the inhibition for brain Na-K ATPase. (6) The uptake of l -glutamic acid into subfractions of the P2 fraction was studied in relation to the distribution of the ‘synaptosomal marker enzymes’. An attempt to correlate the activities of enzymes of glutamic acid metabolism with the uptake of l -glutamic acid into the synaptosomal fraction from various parts of brain was unsuccessful. The high affinity uptake of l -glutamic acid was found to be very active in the synaptosomal fraction from any part of brain examined.  相似文献   

10.
—Incubation of slices of rat central nervous system in Krebs-Ringer bicarbonate buffer produced a lipoprotein fraction which floated on 10·5% sucrose after homogenization of the slices and centrifugation. This fraction was not found after homogenization and centrifugation of fresh tissue and appeared to depend upon incubation. The amount of the light fraction increased in the following order per 100-mg slice: cerebrum < thalamic area < cerebellum < brain stem < spinal cord. The lipid composition of this fraction was similar to that of myelin, but contained a lower protein content compared to myelin of the corresponding area. This fraction was termed ‘dissociated myelin’. Upon incubation of slices a portion of the basic protein was lost from myelin subsequently isolated, and the dissociated fraction was slightly enriched in basic protein. The distribution of myelin protein among the characteristic three groups (basic, proteolipid and high mol. wt.) was quite different in myelin from spinal cord compared to that from other CNS area. Spinal cord myelin contained about 17% protein compared to about 23% in cerebrum, with brain stem myelin intermediate (19%), and the difference appeared to be due to lesser amounts of proteolipid in the caudal areas. The amount of dissociation after incubation was about 3–5 per cent of the total myelin in the cerebral cortex, 10 per cent in the thalamic area, 20 per cent in cerebellum, 35 per cent in the brain stem, and around 45 per cent in spinal cord. The smaller amount of proteolipid protein in spinal cord myelin may result in a deficiency of cohesive forces holding lipids and proteins together, thus causing greater instability and dissociation. Myelin dissociation increased with time of incubation up to 3 h, was augmented by Ca2+, and was substantial at pH 11, reaching a peak at pH 7, then decreased in the acid range. A similar fraction has been isolated previously from fresh CNS tissue made edematous by chronic treatment of rats with triethyl tin. The possible relationship of swelling in the disease process and myelin dissociation are discussed.  相似文献   

11.
ENZYMES OF NUCLEIC ACID METABOLISM IN THE BRAINS OF YOUNG AND ADULT RATS   总被引:2,自引:2,他引:0  
A number of precursors of RNA are incorporated several-fold more readily into the RNA of brain slices from 10-day-old rats than into RNA of slices from adult animals. The brains of the young animals show moderately higher levels of some of the anabolic enzymes of RNA metabolism including RNA polymerase (nucleosidetriphosphate: RNA nucleotidyltransferase; EC 2.7.7.6) and substantially lower levels of the degradative enzymes, the nucleoside phosphorylases. The data suggest that all the enzymes work in a concerted fashion to produce an increased rate of synthesis in young animals rather than that any single controlling enzymic event is responsible.  相似文献   

12.
The incorporation of uridine into RNA in brain slices was studied. Optimal conditions for uridine incorporation were determined. The characteristics of the product suggest that de novo DNA-directcd synthesis of fairly high molecular weight material takes place. Incorporation into RNA of several areas of brain was studied. The incorporation was also studied as a function of the age of the animal. Finally, an apparent correlation was observed between the decrease in uridine incorporation with age and the increase of the enzyme uridine nucleosidase which hydrolyses uridine to uracil, a material which cannot be incorporated into RNA.  相似文献   

13.
Abstract— Adenosine metabolism in the homogenate of brain mainly undergoes deamination to inosine and hypoxanthine, while uniformly labelled [14C]adenosine injected into the carotid artery or [8-14C]adenosine incubated with brain slices was mostly phosphorylated to [14C]adenine nucleotides in brain cells. Adenosine kinase has now been partially purified from homogenates of guinea pig brain. The kinase preparation was free of adenosine deaminase, almost free of adenosine triphosphatase and had a Km of the order of 2 × 10-5M for adenosine.
Kinetic studies with brain slices showed that adenosine reached the cells by diffusion and that the diffusion was facilitated by subsequent phosphorylation to adenine nucleotides. From the following experimental results, it is concluded that the phosphorylation is catalysed by adenosine kinase quantitatively. (1) During the uptake and phosphorylation of adenosine by brain slices, the nucleoside did not split to adenine and ribose moieties. (2) The rate of formation of adenine nucleotides in the slices was a hyperbolic function of the concentration of adenosine in the medium, showing an apparent Km foradenosine of the order of 2 × 10-5 M. (3) Some analogues of adenosine inhibited both the facilitated diffusion of adenosine and the kinase activity, but ouabain (0.005 mM) did not inhibit either.  相似文献   

14.
The incorporation of [methyl-3H]thymidine into DNA, of [5-3H]uridine into RNA, and of [1-14C]leucine into proteins of cerebral hemispheres, cerebellum, and brainstem of guinea pigs after 80 hr of hypoxic treatment was measured. Both in vivo (intraventricular administration of labeled precursors) and in vitro (tissue slices incubation) experiments were performed. The labeling of macromolecules extracted from the various subcellular fractions of the above-mentioned brain regions was also determined. After hypoxic treatment the incorporation of the labeled precursors into DNA, RNA, and proteins was impaired to a different extent in the three brain regions and in the various subcellular fractions examined; DNA and RNA labeling in cerebellar mitochondria and protein labeling in microsomes of the three brain regions examined were particularly affected.  相似文献   

15.
The nucleic acids content of Aphelenchoides rutgersi, Hooper and Myers, was 0.9% DNA and 2.6% RNA dry weight. The DNA contained 29.5% adenine, 29.3% thymine, 22.5% guanine, and 18.8% cytosine, while the RNA was composed of 22.8% adenine, 23.0% uracil, 31.4% guanine, and 22.9% cytosine on a molar basis.The nematodes needed folic acid for reproduction regardless of the presence or absence of nucleic acid supplements in the culture medium. This was shown by including aminopterin, a folic acid antagonist in the culture medium. A 2-hr incubation of nematodes with glycine-14C (U) and orotic-5-3H acid resulted in the incorporation of 3H-label into both DNA and RNA. Only the RNA fraction contained a significant amount of 14C-label. When this RNA was fractionated, the adenine and guanine accounted for the 14C-label, while cytidylic and uridylic acids contained the 3H-label, thereby demonstrating purine and pyrimidine synthesis by A. rutgersi. The incorporation of orotic acid into the pyrimidines was 8 times higher than that of glycine into purines.  相似文献   

16.
VITAMIN B6 TRANSPORT IN THE CENTRAL NERVOUS SYSTEM: IN VITRO STUDIES   总被引:10,自引:10,他引:0  
Abstract— The transport into and release of tritium labeled vitamin B6 ([3H]B6) from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated [3H]B6 by an energy dependent uptake system when [3H]pyridoxine (PIN) was added to the incubation medium. Most of the [3H] within the tissues was phosphorylated [3H]B6. In each tissue, the nonphosphorylated vitamers inhibited the uptake of [3H]PIN from the medium significantly more than the phosphorylated vitamers. The concentrations of the nonphosphorylated B6 vitamers necessary to inhibit brain and choroid plexus uptake of [3H]PIN from the medium by 50% were approx 0.4 μm and 5–10μm respectively after a 30 min incubation. Both brain slices and choroid plexus readily released (46 and 56% respectively in 30 min) previously accumulated [3H]B6 into artificial CSF. However, brain slices released only nonphosphorylated [3H]B6, whereas the choroid plexus released predominantly phosphorylated [3H]B6. Addition of unlabeled PIN to the release media significantly increased the percentage of [3H]B6 released by both brain slices and choroid plexus. The results of these in vitro studies provide evidence that: (1) both brain slices and chloroid plexus possess specific uptake and release mechanisms for B6, and (2) these mechanisms tend to regulate intracellular B6 levels. These studies also suggest that the choroid plexus serves as a locus for the transfer of B6 from blood to CSF and is the source of most of the phosphorylated B6 in CSF.  相似文献   

17.
Abstract—
  • 1 Triglyceride has been isolated from brain by thin-layer chromatography and determined by absorption of the carbonyl group at 1740 cm?1. The means of yields from whole mouse brain, whole rat brain, rat brain grey matter, rat brain stem, and incubated slices of rat brain cortex were 0.15–0.17 μmole/g tissue.
  • 2 The distribution of fatty esters varied from preparation to preparation. Palmitate, stearate and oleate usually occurred in greatest amounts. Hydrolysis of a preparation of triglyceride from whole rat brain with pancreatic lipase indicated that palmitate was equally distributed between the α and β esters.
  • 3 [1-14C]Acetate was rapidly incorporated into triglyceride of slices of incubated rat brain cortex. When the resulting triglyceride was hydrolysed with pancreatic lipase the distribution of radioactivity amongst the hydrolysis products was consistent with both the α and β esters of the triglyceride having been radioactively labelled.
  相似文献   

18.
The effects of Type A botulinum toxin on acetylcholine metabolism were studied using mouse brain slice and synaptosome preparations. Brain slices that had been incubated with the toxin for 2h exhibited a decreased release of acetylcholine into high K+ media. Botulinum toxin did not affect acetylcholine efflux from slices in normal K+ media. When labeled choline was present during the release incubation, a‘newly-synthesized’pool of acetylcholine was formed in the tissue. In toxin-treated slices exposed to high K+, both the production and the release of this‘newly-synthesized’acetylcholine were depressed. A possible explanation for these actions of botulinum toxin would be via an inhibition of the high affinity uptake of choline. This hypothesis was tested by measuring the high affinity uptake of [3H]choline into synaptosomes prepared from brain slices. Previous exposure of slices to botulinum toxin caused a significant reduction in the accumulation of label by the synaptosomes. These data are discussed in terms of our current understanding of the mechanism of action of botulinum toxin and the toxin's interaction with the mechanisms regulating acetylcholine turnover.  相似文献   

19.
Levels of ATP and other nucleotides increased in wounded potato tuber slices, maintained on moist paper for 24 h after preparation. The relative expression intensity of genes encoding adenosine kinase (AK) and adenine phosphoribosyltransferase (APRT) in wounded slices was greater than the intensity of genes of the de novo pathway, glycineamide ribonucleotide formyltransferase (GART) and 5-aminoimidazole ribonucleotide synthetase (AIRS). In vitro activities of adenosine kinase (ATP:adenosine 5'-phosphotransferase; EC 2.7.1.20) and adenine phosphoribosyltransferase (AMP:pyrophosphate phospho-d-ribosyltransferase; EC 2.4.2.7) increased during wounding. Adenosine nucleosidase (adenosine ribohydrolase; EC 3.2.2.7) activity was negligible in freshly prepared slices, but its activity is dramatically enhanced in wounded slices. In situ adenosine salvage activity, estimated from the incorporation of radioactivity from exogenously supplied [8-(14)C]adenosine into nucleotides and RNA, increased more than five times in the wounded slices. These results strongly suggest that greater expression of the genes encoding enzymes of adenosine salvage during wounding is closely related to the increased supply of adenine nucleotides in the wounded slices.  相似文献   

20.
Colchicine blocks axoplasmic flow and produces neurofibrillary degeneration. Brain slices from mice injected intracerebrally with colchicine incorporated more [14C]leucine into protein and had a decreased uptake of [14C]leucine into the perchloric acid-soluble pool than did their controls. Brain RNA content was decreased and free leucine increased by colchicine-induced encephalopathy. The specific activities of proteins from subcellular fractions of colchicine-injected brain were increased in the nuclear fraction, the 100,000-g supernatant, and its vinblastine-precipitable tubulin. The ratio of the specific activity of the crude mitochondrial fraction to that of the total homogenate was decreased, as would consistent with impaired movement of newly labeled protein into synaptosomes. Colchicine-injected brain extracts contained one or more cytosol fractions that stimulated ribosomal incorporation of [14C]leucine into protein in a cell-free system. Colchicine-binding-activity measurements indicated loss of soluble and particulate tubulin in colchicine-injected brains; the decrease of soluble tubulin was verified by its selective precipitation with vinblastine. Colchicine encephalopathy did not affect the rate of spontaneous breakdown of in vitro colchicine binding activity. Similarities of colchicine encephalopathy to the neuron's response to axonal damage suggest that colchicine-induced increase in protein synthesis may, in part, reflect a neuronal response to blockage of neuroplasmic transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号