首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. In microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge (i.e., a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells.  相似文献   

2.
Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. In microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge (i.e., a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells.  相似文献   

3.
AIMS: To study the physiology and metabolism of microbial cells in the performance of microbial fuel cells (MFCs). METHODS AND RESULTS: A dual-chamber MFCs was constructed, and Rhodoferax ferrireducens was used as biocatalyst. To examine the physiology of microbial cells in the performance of MFCs, the anode media containing planktonic cells was replaced with fresh media in which KH(2)PO(4) and/or NH(4)Cl were excluded. The replacing of anode media containing planktonic cells with fresh media excluded of KH(2)PO(4) and NH(4)Cl made the coulombic yield remarkably increased by a factor of 68% (from 29.1 to 46.8C). The results showed that the electricity could be generated with cells in biofilms as biocatalyst, and coulombic yield was improved by limiting cell growth via removal of ingredients in anode media. By supplementation of glucose to the anode media when current declined to baseline, MFCs achieved about same platform current values immediately. MFCs could continue to produce electricity for about 30 h even after glucose was below detection. CONCLUSIONS: Biofilms and metabolism of glucose play important roles in the performance of MFCs. Coulombic yield of MFCs could be improved by regulating the media ingredients using the stable biofilms-electrode system. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first attempt to study the effect of ingredient compositions of anode media on the performance of MFCs. The observed results that MFCs continued to produce electricity after glucose was below detection was helpful to better understand the mechanism of microbial electricity production.  相似文献   

4.
Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for modification is easy to control and can be optimized and implemented for many carbon materials currently used in microbial fuel cells and other bioelectrochemical systems.  相似文献   

5.
The effect of substrate changes on the performance and microbial community of two-chamber microbial fuel cells (MFCs) was investigated in this study. The MFCs enriched with a single substrate (e.g., acetate, glucose, or butyrate) had different acclimatization capability to substrate changes. The MFC enriched with glucose showed rapid and higher power generation, when glucose was switched with acetate or butyrate. However, the MFC enriched with acetate needed a longer adaptation time for utilizing glucose. Microbial community was also changed when the substrate was changed. Clostridium and Bacilli of phylum Firmicutes were detected in acetate-enriched MFCs after switching to glucose. By contrast, Firmicutes completely disappeared and Geobacter-like species were specifically enriched in glucose-enriched MFCs after feeding acetate to the reactor. This study further suggests that the type of substrate fed to MFC is a very important parameter for reactor performance and microbial community, and significantly affects power generation in MFCs.  相似文献   

6.
Microbial fuel cells hold great promise as a sustainable biotechnological solution to future energy needs. Current efforts to improve the efficiency of such fuel cells are limited by the lack of knowledge about the microbial ecology of these systems. The purposes of this study were (i) to elucidate whether a bacterial community, either suspended or attached to an electrode, can evolve in a microbial fuel cell to bring about higher power output, and (ii) to identify species responsible for the electricity generation. Enrichment by repeated transfer of a bacterial consortium harvested from the anode compartment of a biofuel cell in which glucose was used increased the output from an initial level of 0.6 W m(-2) of electrode surface to a maximal level of 4.31 W m(-2) (664 mV, 30.9 mA) when plain graphite electrodes were used. This result was obtained with an average loading rate of 1 g of glucose liter(-1) day(-1) and corresponded to 81% efficiency for electron transfer from glucose to electricity. Cyclic voltammetry indicated that the enhanced microbial consortium had either membrane-bound or excreted redox components that were not initially detected in the community. Dominant species of the enhanced culture were identified by denaturing gradient gel electrophoresis and culturing. The community consisted mainly of facultative anaerobic bacteria, such as Alcaligenes faecalis and Enterococcus gallinarum, which are capable of hydrogen production. Pseudomonas aeruginosa and other Pseudomonas species were also isolated. For several isolates, electrochemical activity was mainly due to excreted redox mediators, and one of these mediators, pyocyanin produced by P. aeruginosa, could be characterized. Overall, the enrichment procedure, irrespective of whether only attached or suspended bacteria were examined, selected for organisms capable of mediating the electron transfer either by direct bacterial transfer or by excretion of redox components.  相似文献   

7.
Microbial fuel cells represent a new method for producing electricity from the oxidation of organic matter. A mediatorless microbial fuel cell was developed using Escherichia coli as the active bacterial component with synthetic wastewater of potato extract as the energy source. The two-chamber fuel cell, with a relation of volume between anode and cathode chamber of 8:1, was operated in batch mode. The response was similar to that obtained when glucose was used as the carbon source. The performance characteristics of the fuel cell were evaluated with two different anode and cathode shapes, platinised titanium strip or mesh; the highest maximum power density (502mWm(-2)) was achieved in the microbial fuel cell with mesh electrodes. In addition to electricity generation, the MFC exhibited efficient treatment of wastewater so that significant reduction of initial oxygen demand of wastewater by 61% was observed. These results demonstrate that potato starch can be used for power generation in a mediatorless microbial fuel cell with high removal efficiency of chemical oxygen demand.  相似文献   

8.
利用异化金属还原菌构建含糖微生物燃料电池   总被引:14,自引:0,他引:14  
环境中的一些微生物通过还原金属氧化物进行无氧呼吸,而石墨电极与金属氧化物相似,也可以作为这类微生物呼吸作用的最终电子受体,利用这类微生物构建微生物燃料电池,以糖类物质为燃料,对电池产电情况、产电原理进行研究。实验结果表明,以Rhodoferaxferrireducens为产电微生物,在外接电阻510Ω条件下,以葡萄糖为燃料,常温下产生的电流密度达158mAm2(平台电压为0.46V,电极有效接触表面积为57cm2),且循环性能良好。更换燃料为其它糖,发现微生物可以利用多种糖进行产电;通过SEM观察发现大量微生物吸附在石墨电极上,用Bradford法对运行20d后电池的细胞量进行定量,测得悬浮细胞蛋白浓度为140mgL,吸附在电极上的生物量为1180mgm2。通过数据采集分析和细菌还原实验,发现吸附在电极上的微生物对电压的产生贡献最大,具有电化学和生物学活性;悬浮细胞对产电贡献很小,不具有电化学和生物学活性。  相似文献   

9.
A fuel cell-type electrochemical device has been used to enrich microbes oxidizing acetate with concomitant electricity generation without using an electron mediator from activated sludge. The device generated a stable current of around 5 mA with complete oxidation of 5 mM acetate at the hydraulic retention time of 2.5 h after 4 weeks of enrichment. Over 70% of electrons available from acetate oxidation was recovered as current. Carbon monoxide or hydrogen did not influence acetate oxidation or current generation from the microbial fuel cell (MFC). Denaturing gradient gel electrophoresis showed that DNA extracted from the acetate-enriched MFC had different 16S rDNA patterns from those of sludge or glucose+glutamate-enriched MFCs. Nearly complete 16S rDNA sequence analyses showed that diverse bacteria were enriched in the MFC fed with acetate. Electron microscopic observations showed biofilm developed on the electrode, but not microbial clumps observed in MFCs fed with complex fuel such as glucose and wastewater from a corn-processing factory.  相似文献   

10.
The microbial communities associated with electrodes in closed and open circuit microbial fuel cells (MFCs) fed with glucose were analyzed by 16S rRNA approach and compared. The comparison revealed that bacteria affiliated with the Aeromonas sp. within the Gammaproteobacteria constituted the major population in the closed circuit MFC (harvesting electricity) and considered to play important roles in current generation. We, therefore, attempted to isolate the dominant bacteria from the anode biofilm, successfully isolated a Fe (III)‐reducing bacterium phylogenetically related to Aeromonas sp. and designated as strain ISO2‐3. The isolated strain ISO2‐3 could grow and concomitantly produce current (max. 0.24 A/m2) via oxidation of glucose or hydrogen with an electrode serving as the sole electron acceptor. The strain could ferment glucose, but generate less electrical current. Cyclic voltammetry supported the strain ISO2‐3 was electrically active and likely to transfer electrons to the electrode though membrane‐associated compounds (most likely c‐type cytochrome). This mechanism requires intimate contact with the anode surface. Scanning electron microscopy revealed that the strain ISO2‐3 developed multiplayer biofilms on the anode surface and also produced anchor‐like filamentous appendages (most likely pili) that may promote long‐range electron transport across the thick biofilm. Biotechnol. Bioeng. 2009; 104: 901–910. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14C-labeled organic compounds, and the evolution of 14CO2 was measured over time. Gas chromatographic analyses were used to monitor CO2 production and O2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14CO2 was measured from [14C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [14C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14C label. [14C]benzene and [14C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO3, CO2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rate of 0.099 mumol g-1 (dry weight) day-1 while oxygen concentration decreased at a rate of 0.124 mumol g-1 (dry weight) day-1. With no added nitrate, CO2 production was not different from that in metabolically inhibited control vials. From the examination of selected components of JP-4, the n-alkane hexane appeared to be degraded as opposed to the branched alkanes of similar molecular weight. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14C-labeled organic compounds, and the evolution of 14CO2 was measured over time. Gas chromatographic analyses were used to monitor CO2 production and O2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14CO2 was measured from [14C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [14C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14C label. [14C]benzene and [14C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO3, CO2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rate of 0.099 mumol g-1 (dry weight) day-1 while oxygen concentration decreased at a rate of 0.124 mumol g-1 (dry weight) day-1. With no added nitrate, CO2 production was not different from that in metabolically inhibited control vials. From the examination of selected components of JP-4, the n-alkane hexane appeared to be degraded as opposed to the branched alkanes of similar molecular weight. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Acetic acid bacteria Gluconobacter oxydans subsp. industrius RKM V-1280 were immobilized into a synthetic matrix based on polyvinyl alcohol modified with N-vinylpyrrolidone and used as biocatalysts for the development of bioanodes for microbial fuel cells. The immobilization method did not significantly affect bacterial substrate specificity. Bioanodes based on immobilized bacteria functioned stably for 7 days. The maximum voltage (fuel cell signal) was reached when 100–130 μM of an electron transport mediator, 2,6-dichlorophenolindophenol, was added into the anode compartment. The fuel cell signals reached a maximum at a glucose concentration higher than 6 mM. The power output of the laboratory model of a fuel cell based on the developed bioanode reached 7 mW/m2 with the use of fermentation industry wastes as fuel.  相似文献   

14.
The fuel of respiration of rat kidney cortex   总被引:15,自引:15,他引:0       下载免费PDF全文
1. In kidney-cortex slices from the well-fed rat, glucose (5mm) supplied 25–30% of the respiratory fuel; in the starved state, the corresponding value was 10%. These results are based on measurements of the net uptake of glucose and of the specific radioactivity of labelled carbon dioxide formed in the presence of [U-14C]-glucose. 2. Added acetoacetate (5mm) or butyrate (10mm) provided up to 80%, and added oleate (2mm) up to 50% of the fuel of respiration. The oxidation of endogenous substrates was suppressed correspondingly. 3. More [U-14C]oleate was removed by the tissue than could be oxidized by the amount of oxygen taken up; less than 25% of the oleate removed was converted into respiratory carbon dioxide and about two-thirds was incorporated into the tissue lipids. The rate of oleate incorporation into the neutral-lipid fraction was calculated to be equivalent to the rate of oxidation of endogenous fat, which provided the chief remaining fuel. 4. The contribution of endogenous substrates to the respiration (50%) in the presence of added oleate is taken to reflect either a high turnover rate of the endogenous neutral lipids (approx. half-life 2·5hr.) or a raised rate of lipolysis caused by the experimental conditions in vitro. 5. Added l-α-glycerophosphate (2·5mm) increased oleate incorporation into the neutral-lipid fraction by up to 40% (i.e. caused a net synthesis of triglyceride). 6. Lactate (2·5mm) added as sole substrate supplied 30% of the respiratory fuel, but with added oleate (2mm) lactate was converted quantitatively into glucose. Oleate stimulated the rate of gluconeogenesis from lactate by 45%. 7. The oxidation of both long-chain and short-chain even-numbered fatty acids was accompanied by ketone-body formation. Ketone-body synthesis from oleate, but not from butyrate, increased six- to seven-fold after 48hr. of starvation. The maximum rates of renal ketogenesis (80μmoles/hr./g. dry wt., with butyrate) were about 20% of the maximum rates observed in the liver (on a weight-for-weight basis) and accounted for, at most, 35% of the fatty acid removed. 8. dl-Carnitine (1·0mm) had no effect on the rates of uptake of acetate, butyrate or oleate or on the rate of radioactive carbon dioxide formation from [U-14C]oleate, but increased ketone-body formation from oleate by more than 100%. Ketone-body formation from butyrate was not increased. 9. There is evidence supporting the assumption that there are cells in which gluconeogenesis and ketogenesis occur together, characterized by equal labelling of [U-14C]oleate and the ketone bodies formed, and other cells that oxidize fat and do not form ketone bodies. 10. Inhibitory effects of unlabelled acetoacetate on the oxidation of [1-14C]butyrate and of unlabelled butyrate on [4-14C]acetoacetate oxidation show that fatty acids and ketone bodies compete as fuels on the basis of their relative concentrations. 11. The pathway of ketogenesis in renal cortex must differ from that of the liver, as β-hydroxy-β-methylglutaryl-CoA synthetase is virtually absent from the kidney. In contrast with the liver the kidney possesses 3-oxo acid CoA-transferase (EC 2.8.3.5), and the ready reversibility of this reaction and that of thiolase (EC 2.3.1.9) provide a mechanism for ketone-body formation from acetyl-CoA. This mechanism may apply to extrahepatic tissues generally, with the possible exception of the epithelium of the rumen and intestines.  相似文献   

15.
Microbial fuel cells hold great promise as a sustainable biotechnological solution to future energy needs. Current efforts to improve the efficiency of such fuel cells are limited by the lack of knowledge about the microbial ecology of these systems. The purposes of this study were (i) to elucidate whether a bacterial community, either suspended or attached to an electrode, can evolve in a microbial fuel cell to bring about higher power output, and (ii) to identify species responsible for the electricity generation. Enrichment by repeated transfer of a bacterial consortium harvested from the anode compartment of a biofuel cell in which glucose was used increased the output from an initial level of 0.6 W m−2 of electrode surface to a maximal level of 4.31 W m−2 (664 mV, 30.9 mA) when plain graphite electrodes were used. This result was obtained with an average loading rate of 1 g of glucose liter−1 day−1 and corresponded to 81% efficiency for electron transfer from glucose to electricity. Cyclic voltammetry indicated that the enhanced microbial consortium had either membrane-bound or excreted redox components that were not initially detected in the community. Dominant species of the enhanced culture were identified by denaturing gradient gel electrophoresis and culturing. The community consisted mainly of facultative anaerobic bacteria, such as Alcaligenes faecalis and Enterococcus gallinarum, which are capable of hydrogen production. Pseudomonas aeruginosa and other Pseudomonas species were also isolated. For several isolates, electrochemical activity was mainly due to excreted redox mediators, and one of these mediators, pyocyanin produced by P. aeruginosa, could be characterized. Overall, the enrichment procedure, irrespective of whether only attached or suspended bacteria were examined, selected for organisms capable of mediating the electron transfer either by direct bacterial transfer or by excretion of redox components.  相似文献   

16.
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the presence of oxygen, power densities of 270+/-10, 350+/-20, and 120+/-10 W/m(3) were recorded from the mini-MFC for glucose, fructose, and ascorbic acid electron donors, respectively, while sucrose and acetate produced no response. The power produced from glucose decreased considerably (相似文献   

17.
Sustainable electricity was generated from glucose in up-flow air-cathode microbial fuel cells (MFCs) with carbon cloth cathode and carbon granular anode. Plastic sieves rather than membrane were used to separate the anode and cathode. Based on 1g/l glucose as substrate, a maximum volumetric power density of 25+/-4 W/m(3) (89 A/m(3)) was obtained for the MFC with a sieve area of 30 cm(2) and 49+/-3 W/m(3) (215 A/m(3)) for the MFC with a sieve area of 60 cm(2). The increased power density with larger sieve area was mainly due to the decrease of internal resistance according to the electrochemistry impedance spectroscopy analysis. Increasing the sieve area from 30 cm(2) to 60 cm(2) resulted in a decrease of overall internal resistance from 41 ohm to 27.5 ohm and a decrease of ohmic resistance from 24.3 ohm to 14 ohm. While increasing operational recirculation ratio (RR) decreased internal resistance and increased power output at low substrate concentration, the effect of RR on cell performance was negligible at higher substrate concentration.  相似文献   

18.
We investigated the mechanism of Congo red degradation and bacterial diversity in a single-chambered microbial fuel cell (MFC) incorporating a microfiltration membrane and air–cathode. The MFC was operated continuously for more than 4 months using a mixture of Congo red and glucose as fuel. We demonstrated that the Congo red azo bonds were reduced at the anode to form aromatic amines. This is consistent with the known mechanism of anaerobic biodegradation of azo dyes. The MFC developed a less dense biofilm at the anode in the presence of Congo red compared to its absence indicating that Congo red degradation negatively affected biofilm formation. Denaturing gradient gel electrophoresis and direct 16S ribosomal DNA gene nucleotide sequencing revealed that the microbial communities differed depending on whether Congo red was present in the MFC. Geobacter-like species known to generate electricity were detected in the presence or absence of Congo red. In contrast, Azospirillum, Methylobacterium, Rhodobacter, Desulfovibrio, Trichococcus, and Bacteroides species were only detected in its presence. These species were most likely responsible for degrading Congo red.  相似文献   

19.
The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.  相似文献   

20.
Several aspects of energy metabolism (glucose utilization, lactate production,14CO2 production from labeled glucose, glutamate or pyruvate, oxygen consumption and contents of ATP and phosphocreatine) were measured in cerebellar granule cells (glutamatergic) in primary cultures and compared with corresponding data for cerebral cortical neurons (mainly GABA-ergic) and astrocytes. Cerebellar granule cells and astrocytes were metabolically more active than cerebral cortical neurons. Glutamate which is utilized as a major metabolic fuel as astrocytes and, to a lesser extent, in cerebral cortical neurons, was virtually not oxidized in cerebellar granule cells.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号