首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was carried out to determine the extent to which genetic factors modify the incidence of radiation-induced bone tumorigenesis in mice, and to map putative susceptibility genes. We conducted a genome-wide linkage analysis in a cohort of 47 interstrain backcrossed mice. After the mice were injected with the bone-seeking alpha-particle-emitting radionuclide (227)Th, 21 of the mice developed osteosarcomas. Two loci, one on chromosome 7 close to D7Mit145 and a second on chromosome 14 (D14Mit125), exhibited suggestive linkage to osteosarcoma predisposition, with LOD scores of 1.37 and 1.05, respectively. The LOD score increased considerably when interaction between these two loci was taken into account (LOD = 3.48). Nine of 12 mice inheriting a susceptibility allele at both loci developed osteosarcomas after (227)Th injection, compared to only four osteosarcomas in 18 animals that did not inherit either of the susceptibility alleles. Variance component analysis revealed that these genetic factors determine approximately one-fifth of the total incidence of osteosarcomas. This study demonstrates the presence of a genetic component that modulates predisposition to radiation-induced osteosarcoma.  相似文献   

2.
The induction of apoptosis in cells of human colon cancer cell lines after gamma irradiation was investigated to determine whether apoptosis was mediated by TP53 and the subsequent expression of its downstream target, the NSAID-activated gene (NAG1). HCT116 (TP53(+/+)), HCT15 (TP53 mutant) and TP53 null HCT116 (TP53(-/-)) cells were irradiated with gamma rays, and apoptosis was measured at various times after irradiation. In HCT116 TP53(+/+) cells, apoptosis was increased after irradiation; the increase was dependent on the time after treatment and the dose of gamma rays. However, in HCT15 TP53 mutant cells and HCT116 TP53(-/-) cells, there were no remarkable changes in apoptosis. The expression of TP53 protein in HCT116 cells was increased after irradiation and was followed by an increase in the expression of NAG1 protein. In contrast, the expression of NAG1 protein in TP53 mutant cells and TP53(-/-) cells was not increased by the radiation treatment, suggesting that NAG1 was required for apoptosis. The expression of NAG1 increased apoptosis in HCT116 cells, but radiation treatment did not further increase apoptosis. The transfection of a NAG1 siRNA into HCT116 cells suppressed radiation-induced apoptosis and inhibited the induction of NAG1 protein without altering the expression of TP53. a NAG1 luciferase promoter construct that included both of the TP53 binding sites, was activated by radiation in dose-dependent manner, while the promoters lacking one or both of the TP53 binding sites in the NAG1 promoter activity either was less responsive or did not respond. The findings reported here indicate that gamma radiation activates the TP53 tumor suppressor, which then increases the expression of NAG1. NAG1 mediates the induction of apoptosis in human colorectal cells.  相似文献   

3.
Multiple genetic changes are required for the development of a malignant cell. The frequency of such changes in cancer cells is higher than can be explained through random mutation, and it was proposed that a subpopulation of cells develop a persistent mutator phenotype. Evidence for such a phenotype has been observed in mammalian cells after treatment with ionizing radiation. The mechanism that promotes this effect has not been defined, but proposed explanations include increased levels of reactive oxygen species (ROS) in irradiated cells and their progeny. The tumor suppressor TP53 is of prime importance in coordinating the cellular response to damage, and it has been suggested to have a role in regulating the cellular redox state. We investigated the persistence of induced levels of ROS in normal diploid human cells for 1 month after X-ray exposure and the role of TP53 in this oxidant response. X radiation induced an oxidant response that persisted for 2 weeks after exposure in cells with normal TP53 function. ROS levels in cells with abrogated TP53 function were decreased in magnitude and duration. X radiation caused a primary transient induction of TP53 followed by a reinduction of TP53 5 days after irradiation. This reinduction persisted for at least 2 days and coincided with the largest induction of apoptosis. The persistently elevated levels of ROS and delayed reinduction of TP53 reported here are further evidence of the delayed effects of ionizing radiation and add to the growing number of such observations.  相似文献   

4.
In this study, we examined effects of low-dose ionizing radiation on organ cultured human foreskin and, in particular, on the epidermis. Diagnostic, therapeutic, natural environmental and incidental exposures to moderate to low doses of radiation are inevitable and, although information on cultured cells continues to accumulate, little is known about the effects of low-dose radiation on human tissues. Our hypothesis is that ex vivo organ cultured foreskin is a simple and reliable model to study the biochemical effects of low-dose radiation exposure on skin. A model such as this will aid in the identification and quantification of low-dose radiation-induced changes in proteins in human skin and may be useful in the development of a precise, non-invasive, and reliable assay of exposure. In this work, several aspects of skin responses to culture conditions and radiation were examined. The responses of epidermal TP53 from organ cultured skin irradiated in medium with and without serum were found to be similar. TP53 levels in organ cultured neonatal foreskin epidermis were then examined for baseline TP53 expression. After an initial increase at 4 h, the TP53 D01 signal returned to low steady-state levels for at least 72 h. Irradiated skin samples from different individuals revealed variations in the TP53 D01 signal. The dose and temporal response of dermis and epidermis to radiation were examined by Western blotting from 0 to 24 h after exposure. After irradiation and incubation, the epidermis was removed and assayed by Western blotting and was found to have increases in the TP53 D01 epitope and the TP53 phosphoserine 15 (TP53-S15p) epitope that reached a maximum at about 3 h. In the epidermis, doses of 1-5 cGy of radiation were detectable with the TP53 D01, and CDKN1A antibodies and doses greater than 10 cGy were detectable with the TP53-S15p antibody. When the dermis was compared to epidermis, it was found that dermis had a smaller response to radiation and more phosphorylated TP53.  相似文献   

5.
Exposure to ionizing radiation induces p53, and its inhibition improves mouse survival. We tested the effect of 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG) on p53 expression and function after radiation exposure. 17-DMAG, a heat-shock protein 90 (Hsp90) inhibitor, protects human T cells from ionizing radiation-induced apoptosis by inhibiting inducible nitric oxide synthase (iNOS) and subsequent caspase-3 activation. Using ex vivo human peripheral blood mononuclear cells, we found that ionizing radiation increased p53 accumulation, acute p53 phosphorylation, Bax expression and caspase-3/7 activation in a radiation dose- and time postirradiation-dependent manner. 17-DMAG inhibited these increases in a concentration-dependent manner (IC(50) = 0.93 ± 0.01?μM). Using in vitro models, we determined that inhibition of p53 by genetic knockout resulted in lower levels of caspase-3/7 activity 1?day after irradiation and enhanced survival at 10?days. Analysis of p53-Hsp90 interaction in ex vivo cell lysates indicated that the binding between the two molecules occurred after irradiation but 17-DMAG prevented the binding. Taken together, these results suggest the presence of p53 phosphorylation and Hsp90-dependent p53 stabilization after acute irradiation. Hsp90 inhibitors such as 17-DMAG may prove useful with radiation-based cancer therapy as well as for general radioprotection.  相似文献   

6.
7.
Human gliomas are among the most aggressive tumors, and they respond poorly to treatment. The efficacy of surgical, radiation and chemotherapy treatment of these tumors is limited by the development of resistance. Interventions aimed at altering the response of these tumors to radiation or chemotherapy treatments are needed to improve survival rate and prognosis. Glioblastomas are generally p53 (TP53) functional tumors; however, DNA repair pathways are activated in these tumors instead of the pathways to apoptosis. Thus resistance to treatment is seen in the ability of these tumors to overcome cell death. We present data that demonstrate that U87MG glioblastoma cells transduced with a dominant-negative p53 adenovirus construct become sensitized to radiation-induced mitotic catastrophe through abrogation of G(2)/M checkpoint control and overaccumulation of cyclin B1. These findings suggest that interventions abrogating the G(2)/M checkpoint sensitize these cells to radiation-induced mitotic catastrophe and may represent a novel mechanism to increase the efficacy of radiation in wild-type p53 gliomas that are resistant to apoptosis.  相似文献   

8.
There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect, which are specific modes in stress response to low-dose/low-dose rate radiation. Recently, we found that the accumulation of iNOS in wtp53 celIs was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays, but not by each one, resulting in an increase in nitrite concentrations of medium. It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation. In addition, we found that the radiosensitivity of wtp53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays. This reduction of radiosensitivity of wtp53 cells was nearly completely suppressed by the addition of NO scavenger, carboxy-PTIO to the medium. This reduction of radiosensitivity of wtp53 cells is just radiation-induced adaptive response, suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation.  相似文献   

9.
Thoracic ionizing radiation is a standard component of combined-modality therapy for locally advanced non-small cell lung cancer. To improve low 5-year survival rates (5- 15%), new strategies for enhancing the effectiveness of ionizing radiation are needed. The kinase inhibitor UCN-01 has multiple cell cycle effects, including abrogation of DNA damage-induced S- and G(2)-phase arrest, which may limit DNA repair prior to mitosis. To test the hypothesis that therapy-induced cell cycle effects would have an impact on the efficacy of a combination of UCN-01 plus ionizing radiation, the cell cycle responses of the non-small cell lung cancer cell lines Calu1 (TP53-null) and A549 (wild-type TP53) to 2 Gy ionizing radiation were correlated with clonogenic survival after irradiation plus UCN-01. Irradiated cells were exposed to UCN-01 simultaneously and at 3-h increments after irradiation. In Calu1 cells but not A549 cells, sequence-dependent potentiation of radiation by UCN-01 was observed, with maximal interaction occurring when UCN-01 was administered 6 h after irradiation. This coincided with the postirradiation time with the greatest depletion of cells from G(1). Abrogation of G(2) arrest was observed regardless of TP53 status. The role of TP53 was investigated using siRNA to achieve gene silencing. These studies demonstrated that radiation plus UCN-01 was more effective in cells with diminished TP53 activity, associated with a reduced G(1) checkpoint arrest. These studies indicate that simultaneous elimination of multiple DNA damage-induced checkpoints in G(1), S and G(2) may enhance the effects of radiation and that drug scheduling may have an impact on clinical efficacy.  相似文献   

10.
S Ning  S J Knox 《Radiation research》1999,151(6):659-669
Cells of the TP53-deficient human leukemia cell line HL60 continue to progress throughout the cell cycle and arrest in the G2/M phase during protracted exposure to exponentially decreasing low-dose-rate radiation. We have hypothesized that G2/M-phase arrest contributes to the extent of radiation-induced cell death by apoptosis as well as to overall cell killing. To test this hypothesis, we used caffeine and nocodazole to alter the duration of G2/M-phase arrest of HL60 cells exposed to exponentially decreasing low-dose-rate irradiation and measured the activity of G2/M-phase checkpoint proteins, redistribution of cells in the phases of the cell cycle, cell death by apoptosis, and overall survival after irradiation. The results from these experiments demonstrate that concomitant exposure of HL60 cells to caffeine (2 mM) during irradiation inhibited radiation-induced tyrosine 15 phosphorylation of the G2/M-phase transition checkpoint protein CDC2/p34 kinase and reduced G2/M-phase arrest by 40-46% compared to cells irradiated without caffeine. Radiation-induced apoptosis also decreased by 36-50% in cells treated with caffeine and radiation compared to cells treated with radiation alone. Radiation survival was significantly increased by exposure to caffeine. In contrast, prolongation of G2/M-phase arrest by pre-incubation with nocodazole enhanced radiation-induced apoptosis and overall radiation-induced cell killing. To further study the role of cell death by apoptosis in the response to exponentially decreasing low-dose-rate irradiation, HL60 cells were transfected with the BCL2 proto-oncogene. The extent of G2/M-phase arrest was similar for parental, neomycin-transfected control and BCL2-transfected cells during and after exponentially decreasing low-dose-rate irradiation. However, there were significant differences (P < 0.01) in the extent of radiation-induced apoptosis of parental and neomycin- and BCL2-transfected cells after irradiation, with significantly less radiation-induced apoptosis and higher overall survival in BCL2-transfected cells than similarly irradiated control cells. These data demonstrate that radiation-induced G2/M-phase arrest and subsequent induction of apoptosis play an important role in the response of HL60 cells to low-dose-rate irradiation and suggest that it may be possible to increase radiation-induced apoptosis by altering the extent of G2/M-phase arrest. These findings are clinically relevant and suggest a novel therapeutic strategy for increasing the efficacy of brachytherapy and radioimmunotherapy.  相似文献   

11.
Although extensive data indicate that the tumor suppressor TP53 modifies the radiation responses of human and rodent cells, the exact relationship between TP53 and radiation responsiveness remains controversial. To elucidate the relevance of endogenous TP53 genomic status to radiosensitivity in a cell-type-independent manner, different cells of 10 human tumor cell lines with different tissues of origin were examined for TP53 status. The TP53 status was compared with radiation-related cell survival parameters (D(q), D(0), SF2) and with the mode of cell death. Different modes of cell death were examined by measuring radiation-induced micronucleation, apoptosis and abnormal cells. Alterations of the TP53 gene were detected in eight cell lines. No splicing mutation was found. Five cell lines showed codon 68 polymorphism. Codon 72 alterations were found in four cell lines. "Hot spot" alterations were detected in only two of 10 cell lines. Although the cells differed widely in survival parameters (D(q), D(0), SF2) and modes of cell death (micronucleation/apoptosis/abnormal cells) after irradiation, significant cell-type-independent correlations were obtained between the multiple cell death parameter micronucleation/apoptosis/abnormal cells and SF2 (P < 0.001) and D(q) (P = 0.003). Moreover, cells with a wild-type TP53 gene were more resistant to X rays than cells with a mutated TP53 gene or cells that were TP53-deficient. The alterations within exons 5-10 of the TP53 correlated with a enhanced radiosensitivity. For the first time, we demonstrated a correlation between endogenous genetic alterations within exons 5-10 of TP53 and radiation-related cell survival and cell death. This indicates a new molecular relevance of TP53 status to intrinsic cellular radiosensitivity.  相似文献   

12.
Therapeutic irradiation of the brain can cause a progressive cognitive dysfunction that may involve defects in neurogenesis. In an effort to understand the mechanisms underlying radiation-induced stem cell dysfunction, neural precursor cells isolated from the adult rat hippocampus were analyzed for acute (0-24 h) and chronic (3-33 days) changes in apoptosis and reactive oxygen species (ROS) after exposure to X rays. Irradiated neural precursor cells exhibited an acute dose-dependent apoptosis accompanied by an increase in ROS that persisted over a 3-4-week period. The radiation effects included the activation of cell cycle checkpoints that were associated with increased Trp53 phosphorylation and Trp53 and p21 (Cdkn1a) protein levels. In vivo, neural precursor cells within the hippocampal dentate subgranular zone exhibited significant sensitivity to radiation. Proliferating precursor cells and their progeny (i.e. immature neurons) exhibited dose-dependent reductions in cell number. These reductions were less severe in Trp53-null mice, possibly due to the disruption of apoptosis. These data suggest that the apoptotic and ROS responses may be tied to Trp53-dependent regulation of cell cycle control and stress-activated pathways. The temporal coincidence between in vitro and in vivo measurements of apoptosis suggests that oxidative stress may provide a mechanistic explanation for radiation-induced inhibition of neurogenesis in the development of cognitive impairment.  相似文献   

13.
226Ra induced bone-cancers: the effects of a delayed Na-alginate treatment   总被引:1,自引:0,他引:1  
At the present time no unequivocal evidence exists which shows that a reduction in the body-burden of a radionuclide by decorporative treatment results in a proportional decrease in the risk of long-term radiation effects. We have investigated the effectiveness of the daily administration of Na-alginate via the diet in removing 226Ra from the skeleton and in reducing the number of late effects such as osteosarcomas. The animals used were male C57Bl mice which had been injected with one of three different amounts of 226Ra (4.4, 10.7 or 24.8 kBq) four days prior to the onset of the decorporative treatment. The results showed that although this treatment was able to produce a substantial reduction in the 226Ra content of the mice it did not reduce the incidence of osteosarcoma. These results question the effectiveness of decorporation procedures initiated at longer times after contamination.  相似文献   

14.
Acute low-dose irradiation (0.1-1 Gy, 1.33 Gy/min) of cells of a human glioblastoma cell line, A-172, induced a dose-dependent monophasic accumulation of TP53 (formerly known as p53) and CDKN1A (formerly known as WAF1). In contrast, chronic gamma irradiation (0.001 Gy/min) produced a clear biphasic response of accumulation TP53 with the first peak at 1.5 h (0.09 Gy) and the second peak at 10 h (0.54 Gy). Significantly, when the cells were preirradiated with a chronic dose of gamma irradiation for 24 h (1.44 Gy) or 50 h (3 Gy), they no longer responded to an acute challenging dose to produce a dose-dependent response of the TP53 pathway. These findings suggest that chronic irradiation at low dose rate alters the TP53-dependent signal transduction pathway. Wearing away of the TP53 pathway by chronic exposure to radiation may have important implications for radiation protection.  相似文献   

15.
To investigate the radioprotective potential of eckol, a component of the seaweed Ecklonia cava, against radiation in vivo, we evaluated the effect of eckol on cyto- and histo-protective capability of the lymphocytes and intestine against damage induced by a single whole body irradiation (WBI) in vivo. Here, we ascertained that eckol protected the lymphocytes’ viability and rescued intestinal cells from radiation-induced apoptosis by decreasing the amount of pro-apoptotic p53 and Bax and increasing that of anti-apoptotic Bcl-2. These findings indicate that the overexpression of anti-apoptotic protein, which may lead to resistance to DNA damage, is involved deeply in protection of gastrointestinal cells after irradiation. Thus, eckol that can protect cells and tissues against ionizing radiation may have considerable potential as adjuncts to successful radiotherapy.  相似文献   

16.
17.
In a series of experiments, mainly CBA/H, but also C2H/H, mice aged 3 months were injected intraperitoneally with solutions of 90Sr Cl2, the dose per mouse varying from 7 to 20 muCi, and compared with similar mice treated with 226Ra or 239Pu, discussed elsewhere. In male mice, the commonest tumour resulting at each dose of 90Sr was non-osteogenic (angio) sarcoma, a tumour not seen after 226Ra. In females, this tumour occurred far less frequently than osteosarcoma. In CBA mice of both sexes converted to radiation chimaeras (which are sterile) and similarly treated with 90Sr, the only skeletal tumours were osteosarcomas. When only half the body of CBA mice was X-irradiated with 1000 rad and the mice given 90Sr, non-osteogenic sarcoma occurred predominantly in those mice X-irradiated in the cephalic half. The results suggest that intact testes may provide co-factors for this type of neoplasm, whereas others have shown that oestrogens facilitate murine osteosarcoma. The non-osteogenic osteosarcomas arise from damaged stromal elements in bone-marrow of selected bones. The risk to this component of bone-marrow, as well as to haematopoietic tissue, should be considered in radiation protection.  相似文献   

18.
19.
p53 functions as a cell cycle control protein in osteosarcomas.   总被引:103,自引:35,他引:68       下载免费PDF全文
Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae.  相似文献   

20.
The carcinogenicity of injected (239)Pu citrate was compared in female mice of the C3H, C57BL/6 and BC3F(1) hybrid strains with different spectra of spontaneous or radiation-induced tumors. A significant reduction in survival due to early death caused particularly by the induction of osteosarcomas was noted in each strain after injection of 500 Bq or more. The dose response of osteosarcomas appeared to have a similar pattern in each strain except for the differences in the skeletal dose ranges for the maximum induction. While the incidence of lymphoid tumors decreased as that of osteosarcomas increased sharply to the maximum at higher doses, their histological phenotypes were predominantly non-thymic, pre-B-cell leukemic lymphomas compared to the controls in each strain. Myeloid leukemias were not highly induced in any of the control and (239)Pu-injected mice, and solid tumors involving the other organs were reduced in each strain after injection of 500 Bq or more. To follow up the hematological kinetics related to alpha-particle irradiation of bone marrow stem cells, sequential examinations were done in mice of each strain within 1 year after injection of 5000 Bq. The numbers of peripheral white blood cells and bone marrow cells were consistently reduced in each strain from 90 days on, while spleen cells increased from 180 days on. Granulocyte-macrophage and macrophage colony-forming cells were also consistently reduced in the bone marrow, with a compensatory increase in the spleen from 90 days on. These findings indicate that the carcinogenic and hematopoietic responses were specific to alpha-particle irradiation and were independent of mouse strain after injection with (239)Pu citrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号