首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to test the lever arm model of force generation, the effects of replacing magnesium with calcium as the ATP-chelated divalent cation were determined for several myosin and actomyosin reactions. The isometric force produced by glycerinated muscle fibers when CaATP is the substrate is 20% of the value obtained with MgATP. For myosin subfragment 1 (S1), the degree of lever arm rotation, determined using transient electric birefringence to measure rates of rotational Brownian motion in solution, is not significantly changed when calcium replaces magnesium in an S1-ADP-vanadate complex. Actin activates S1 CaATPase activity, although less than it does MgATPase activity. The increase in actin affinity when S1. CaADP. P(i) is converted to S1. CaADP is somewhat greater than it is for the magnesium case. The ionic strength dependence of actin binding indicates that the change in apparent electrostatic charge at the acto-S1 interface for the S1. CaADP. P(i) to S1. CaADP step is similar to the change when magnesium is bound. In general, CaATP is an inferior substrate compared to MgATP, but all the data are consistent with force production by a lever arm mechanism for both substrates. Possible reasons for the reduced magnitude of force when CaATP is the substrate are discussed.  相似文献   

2.
S Highsmith 《Biochemistry》1990,29(47):10690-10694
The ionic strength dependence of skeletal myosin subfragment 1 (S1) binding to unregulated F-actin was measured in solutions containing from 0 to 0.50 M added lithium acetate (LiOAc) in the absence and presence of MgADP. The data were analyzed by using a theory based on an ion interaction model that is rigorous for high ionic strength solutions [Pitzer, K. S. (1973) J. Phys. Chem. 77, 268-277] in order to obtain values for K, the equilibrium association constant when the ionic strength is zero, and for [zMzA[, the absolute value of the product of the net electric charges of the actin binding site on myosin (zM) and the myosin binding site on actin (zA). The presence of MgADP reduced K by a factor of 10, as expected, and reduced [zMzA[ by about 1 esu2. Because the presence of MgADP is not likely to change the net charge of the myosin binding site on actin, these data are consistent with a model in which MgADP binding to S1 reduces its affinity for actin by a mechanism that reduces the net electric charge of the acting binding site on S1. The value of [zMzA[ in the absence of ADP was 8.1 +/- 0.9 esu2, which, if one uses integer values, suggests that zM and zA are in the 8+ to 1+ esu and 1- to 8- esu ranges, respectively. ADP binding then reduces zM to the 7+ to 0.88+ esu range.  相似文献   

3.
Energetics and mechanism of actomyosin adenosine triphosphatase.   总被引:17,自引:0,他引:17  
H D White  E W Taylor 《Biochemistry》1976,15(26):5818-5826
Rate constants were determined for the reaction of actin with subfragment 1 (S1), S1-product complex, heavy meromyosin (HMM), and HMM-products complex for a range of temperatures, pH's, and ionic strengths. For actin concentrations up to 10 muM, the rate of reassociation of the product intermediate was equal to the rate of actomyosin subfragment 1 (acto-S1) or acto-HMM adenosine triphosphatase (ATPase). Therefore, under these conditions, the only important pathway for adenosine triphosphate hydrolysis is through the dissociation and recombination of S1 or HMM. The apparent rate constants for the association of S1 and S1-product with actin showed a similar large ionic strength dependence. The S1-product reaction had a large temperature dependence paralleling the rate of acto-S1 ATPase, while the reaction with S1 had a much smaller variation with temperature. The low value of the rate constant for the S1-product reaction and its relationship to the s1 areaction suggests that the apparent rate constant does not measure a simple second-order reaction. A plausible mechanism is a rapid equilibrium for the binding step, followed by a transition (product release) which increases the association constant. A refractory state could also reduce the apparent rate constant of recombination. An approximate assignment of equilibrium constants for the acto-S1 ATPase reaction was made based on the interpretation of the present evidence and equilibrium constnats for the S1 ATPase.  相似文献   

4.
The ATPase activity of acto-myosin subfragment 1 (S1) at low ratios of S1 to actin in the presence of tropomyosin is dependent on the tropomyosin source and ionic conditions. Whereas skeletal muscle tropomyosin causes a 60% inhibitory effect at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on the ionic strength. At low ionic strength (20 mM) smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM) it potentiates the ATPase activity three- to five-fold. Therefore, the difference in the effect of smooth muscle and skeletal muscle tropomyosin on the acto-S1 ATPase activity was due to a greater fraction of the tropomyosin-actin complex being turned on in the absence of S1 with smooth muscle tropomyosin than with skeletal muscle tropomyosin. Using well-oriented gels of actin and of reconstituted specimens from vertebrate smooth muscle thin filament proteins suitable for X-ray diffraction, we localized the position of tropomyosin on actin under different levels of acto-S1 ATPase activity. By analysing the equatorial X-ray pattern of the oriented specimens in combination with solution scattering experiments, we conclude that tropomyosin is located at a binding radius of about 3.5 nm on the f-actin helix under all conditions studied. Furthermore, we find no evidence that the azimuthal position of tropomyosin is different for smooth muscle tropomyosin at various ionic strengths, or vertebrate tropomyosin, since the second actin layer-line intensity (at 17.9 nm axial and 4.3 nm radial spacing), which was shown in skeletal muscle to be a sensitive measure of this parameter, remains strong and unchanged. Differences in the ATPase activity are not necessarily correlated with different positions of tropomyosin on f-actin. The same conclusion is drawn from our observations that, although the regulatory protein caldesmon inhibits the ATPase activity in native and reconstituted vertebrate smooth muscle thin filaments at a molar ratio of actin/tropomyosin/caldesmon of 28:7:1, the second actin layer-line remains strong. Only adding caldesmon in excess reduces the intensity of the second actin layer-line, from which the binding radius of caldesmon can be estimated to be about 4 nm. The lack of predominant meridional reflections in oriented specimens, with caldesmon present, suggests that caldesmon does not project away from the thin filament as troponin molecules in vertebrate striated muscle in agreement with electron micrographs of smooth muscle thin filaments. In freshly prepared native smooth muscle thin filaments we observed a Ca(2+)-sensitive reversible bundling effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The rate of binding and dissociation of MgADP from its ternary complex with actin and S1 was measured by following the extent to which fixed concentrations of MgADP slow down MgATP-induced dissociation of acto-S1. The solution of the equations describing this process shows that at any MgADP concentration the apparent rate of acto-S1 dissociation should be proportional to a square root of the equilibrium constant for MgADP dissociation and to MgATP concentration. By measuring the apparent rate of acto-S1 dissociation as a function of MgATP concentration, the rate of MgADP binding and dissociation were determined as 5 X 10(6) M-1 X s-1 and 1400 s-1, respectively. These rates were unchanged by modification of SH1 thiol of S1 by a variety of fluorescence and spin-labels, but dissociation rate was drastically reduced when SH1 was labelled with 5-iodoacetamidofluorescein.  相似文献   

6.
C Tesi  F Travers  T Barman 《Biochemistry》1990,29(7):1846-1852
The initial steps of actomyosin subfragment 1 (acto-S1) ATPase (dissociation and binding of ATP) were studied at -15 degrees C with 40% ethylene glycol as antifreeze. The dissociation kinetics were followed by light scattering in a stopped-flow apparatus, and the binding of ATP was followed by the ATP chase method in a rapid-flow quench apparatus. The data from the chase experiments were fitted to E + ATP in equilibrium (K1) E.ATP----(k2) E*ATP, where E is acto-S1 or S1. The kinetics of the binding of ATP to acto-S1 were sensitive to the degree of saturation of the actin with S1. There was a sharp transition with actin nearly saturated with S1: when the S1 to actin ratio was low, the kinetics were fast (K1 greater than 300 microM, k2 greater than 40 s-1); when it was high, they were slow (K1 = 14 microM, k2 = 2 s-1). With S1 alone K1 = 12 microM and k2 = 0.07 S-1. With acto heavy meromyosin (acto-HMM) the binding kinetics were the same as with saturated acto-S1, regardless of the HMM to actin ratio. The dissociation kinetics were independent of the S1 to actin ratio. Saturation kinetics were obtained with Kd = 460 microM and kd = 75 S-1. The data for the saturated acto-S1 could be fitted to a reaction scheme, but for lack of structural information the abrupt dependence of the ATP binding kinetics upon the S1 to actin ratio is difficult to explain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
S S Margossian  S Lowey 《Biochemistry》1978,17(25):5431-5439
The effect of ionic strength, temperature, and divalent cations on the association of myosin with actin was determined in the ultracentrifuge using scanning absorption optics. The association constant (Ka) for the binding of heavy meromyosin (HmM) to F-actin was 1 X 10(7) M-1 at 20 degrees C, in 0.10 M KCl, 0.01 M imidazole (pH 7.0), 5 MM potassium phosphate, 1 mM MgCl2, and 0.3 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. Ka was the same for HMM prepared by trypsin or chymotrypsin. The affinity of subfragment 1 (S1) for actin under the same ionic conditions was 3 X 10(6) M-1. Varying the preparative procedure for S1 had little effect on Ka. The small difference in binding energy between HMM and S1 suggests that either only one head can bind strongly to actin at a time or that free energy is lost during the sterically unfavorable attachment of the two heads to actin.  相似文献   

8.
Hybrid contractile apparatus was reconstituted in skeletal muscle ghost fibers by incorporation of skeletal muscle myosin subfragment 1 (S1), smooth muscle tropomyosin and caldesmon. The spatial orientation of FITC-phalloidin-labeled actin and IAEDANS-labeled S1 during sequential steps of the acto-S1 ATPase cycle was studied by measurement of polarized fluorescence in the absence or presence of nucleotides conditioning the binding affinity of both proteins. In the fibers devoid of caldesmon addition of nucleotides evoked unidirectional synchronous changes in the orientation of the fluorescent probes attached to F-actin or S1. The results support the suggestion on the multistep rotation of the cross-bridge (myosin head and actin monomers) during the ATPase cycle. The maximal cross-bridge rotation by 7 degrees relative to the fiber axis and the increase in its rigidity by 30% were observed at transition between A**.M**.ADP.Pi (weak binding) and A--.M--.ADP (strong binding) states. When caldesmon was present in the fibers (OFF-state of the thin filament) the unidirectional changes in the orientation of actin monomers and S1 were uncoupled. The tilting of the myosin head and of the actin monomer decreased by 29% and 90%, respectively. It is suggested that in the "closed" position caldesmon "freezes" the actin filament structure and induces the transition of the intermediate state of actomyosin towards the weak-binding states, thereby inhibiting the ATPase activity of the actomyosin.  相似文献   

9.
Analysis of two recombinant variants of chicken striated muscle alpha-tropomyosin has shown that the structure of the amino terminus is crucial for most aspects of tropomyosin function: affinity to actin, promotion of binding to actin by troponin, and regulation of the actomyosin MgATPase. Initial characterization of variants expressed and isolated from Escherichia coli has been published (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). Fusion tropomyosin contains 80 amino acids of a nonstructural influenza virus protein (NS1) on the amino terminus. Nonfusion tropomyosin is a variant because the amino-terminal methionine is not acetylated (unacetylated tropomyosin). The affinity of tropomyosin labeled at Cys190 with N-[14C]ethylmaleimide for actin was measured by cosedimentation in a Beckman Airfuge. Fusion tropomyosin binds to actin with an affinity slightly greater than that of chicken striated muscle alpha-tropomyosin (Kapp = 1-2 X 10(7) versus 0.5-1 X 10(7) M-1) and more strongly than unacetylated tropomyosin (Kapp = 3 X 10(5) M-1). Both variants bind cooperatively to actin. Troponin increases the affinity of unacetylated tropomyosin for actin (+Ca2+, Kapp = 6 X 10(6) M-1; +EGTA, Kapp = 2 X 10(7) M-1), but the affinity is still lower than that of muscle tropomyosin for actin in the presence of troponin (Kapp much greater than 10(8) M-1). Troponin has no effect on the affinity of fusion tropomyosin for actin indicating that binding of troponin T to the over-lap region of the adjacent tropomyosin, presumably sterically prevented by the fusion peptide in fusion tropomyosin, is required for troponin to promote the binding of tropomyosin to actin. The role of troponin T in regulation and the mechanisms of cooperative binding of tropomyosin to actin have been discussed in relation to this work.  相似文献   

10.
The effects of nucleotide binding and temperature on the internal structural dynamics of myosin subfragment 1 (S1) were monitored by intrinsic tryptophan phosphorescence lifetime and fluorescence anisotropy measurements. Changes in the global conformation of S1 were monitored by measuring its rate of rotational diffusion using transient electric birefringence techniques. At 5 degrees C, the binding of MgADP, MgADP,P and MgADP,V (vanadate) progressively reduce the rotational freedom of S1 tryptophans, producing what appear to be increasingly more rigidified S1-nucleotide structures. The changes in the luminescence properties of the tryptophans suggest that at least one is located at the interface of two S1 subdomains. Increasing the temperature from 0 to 25 degrees C increases the apparent internal mobility of S1 tryptophans in all cases and, in addition, a reversible temperature-dependent transition centered near 15 degrees C was observed for S1, S1-MgADP and S1-MgADP,P, but not for S1-MgADP,V. The rotational diffusion constants of S1 and S1-MgADP were measured at temperatures between 0 and 25 degrees C. After adjusting for the temperature and viscosity of the solvent, the data indicate that the thermally induced transition at 15 degrees C comprises local conformational changes, but no global conformational change. Structural features of S1-MgADP,P, which may relate to its role in force generation while bound to actin, are presented.  相似文献   

11.
It is known that ternary complexes of myosin subfragment 1 (S1) with ADP and the Pi analogs beryllium fluoride (BeFx) and aluminum fluoride (AlF4-) are stable analogs of the myosin ATPase intermediates M* x ATP and M** x ADP x Pi, respectively. Using kinetic approaches, we compared the rate of formation of the complexes S1 x ADP x BeFx and S1 x ADP x AlF4- in the absence and in the presence of F-actin, as well as of the interaction of these complexes with F-actin. We show that in the absence of F-actin the formation of S1 x ADP x BeFx occurs much faster (3-4 min) than that of S1 x ADP x AlF4- (hours). The formation of these complexes in the presence of F-actin led to dissociation of S1 from F-actin, this process being monitored by a decrease in light scattering. The light scattering decrease of the acto-S1 complex occurred much faster after addition of BeFx (during 1 min) than after addition of AlF4- (more than 20 min). In both cases the light scattering of the acto-S1 complex decreased by 40-50%, but it remained much higher than that of F-actin measured in the absence of S1. The interaction of the S1 x ADP x BeFx and S1 x ADP x AlF4- complexes with F-actin was studied by the stopped-flow technique with high time resolution (no more than 0.6 sec after mixing of S1 with F-actin). We found that the binding of S1 x ADP x BeFx or S1 x ADP x AlF4- to F-actin is accompanied by a fast increase in light scattering, but it does not affect the fluorescence of a pyrene label specifically attached to F-actin. We conclude from these data that within this time range a "weak" binding of the S1 x ADP x BeFx and S1 x ADP x AlF4- complexes to F-actin occurs without the subsequent transition of the "weak" binding state to the "strong" binding state. Comparison of the light scattering kinetic curves shows that S1 x ADP x AlF4- binds to F-actin faster than S1 x ADP x BeFx does: the second-order rate constants for the "weak" binding to F-actin are (62.8 +/- 1.8) x 10(6) M-1 x sec-1 in the case of S1 x ADP x AlF4- and (22.6 +/- 0.4) x 10(6) M-1 x sec-1 in the case of S1 x ADP x BeFx. We conclude that the stable ternary complexes S1 x ADP x BeFx and S1 x ADP x AlF4- can be successfully used for kinetic studies of the "weak" binding of the myosin heads to F-actin.  相似文献   

12.
A technique based on fluorescence polarization (anisotropy) was used to measure the binding of antibodies to DNA under a variety of conditions. Fluorescein-labeled duplexes of 20 bp in length were employed as the standard because they are stable even at low ionic strength yet sufficiently short so that both arms of an IgG cannot bind to the same duplex. IgG Jel 274 binds duplexes in preference to single-stranded DNA; in 80 mM NaCl Kobs for (dG)20.(dC)20 is 4.1x10(7) M-1 compared with 6.4x10(5) M-1 for d(A5C10A5). There is little sequence specificity, but the interaction is very dependent on ionic strength. From plots of log Kobs against log[Na+] it was deduced that five or six ion pairs are involved in complex formation. At low ionic strength,Kobs is independent of temperature and complex formation is entropy driven with DeltaH degrees obs and DeltaC degrees p,obs both zero. In contrast, in 80 mM NaCl DeltaC degrees p,obs is -630 and -580 cal mol-1K-1 for [d(TG)]10.[d(CA)]10 and (dG)20.(dC)20 respectively. IgG Jel 241 also binds more tightly to duplexes than single-stranded DNA, but sequence preferences were apparent. The values for Kobs to [d(AT)]20 and [d(GC)]20 are 2.7x10(8) and 1.3x10(8) M-1 respectively compared with 5.7x10(6) M-1 for both (dA)20. (dT)20 and (dG)20.(dC)20. As with Jel 274, the binding of Jel 241 is very dependent on ionic strength and four or five ionic bonds are involved in complex formation with all the duplex DNAs which were tested. DeltaC degrees p,obs for Jel 241 binding to [d(AT)]20 was negative (-87 cal mol-1K-1) in 80 mM NaCl but was zero at high ionic strength (130 mM NaCl). Therefore, for duplex-specific DNA binding antibodies DeltaC degrees p,obs is dependent on [Na+] and a large negative value does not correlate with sequence-specific interactions.  相似文献   

13.
The interactions of aldolase with regulatory proteins of rabbit skeletal muscle were investigated by moving-boundary electrophoresis. A salt-dependent interaction of troponin, tropomyosin and the tropomyosin-troponin complex with aldolase was detected, the tropomyosin-troponin complex displaying a greater affinity for the enzyme than did either regulatory protein alone. The results indicate that aldolase possesses multiple binding sites (three or more) for these muscle proteins. Quantitative studies of the binding of aldolase to actin-containing filaments showed the interaction to be influenced markedly by the presence of these muscle regulatory proteins on the filaments. In imidazole/HCl buffer, I 0.088, pH 6.8, aldolase binds to F-actin with an affinity constant of 2 x 10(5) M-1 and a stoicheiometry of one tetrameric aldolase molecule per 14 monomeric actin units. Use of F-actin-tropomyosin as adsorbent results in a doubling of the stoicheiometry without significant change in the intrinsic association constant. With F-actin-tropomyosin-troponin a lower binding constant (6 x 10(4) M-1) but even greater stoicheiometry (4:14 actin units) are observed. The presence of Ca2+ (0.1 mM) decreases this stoicheiometry to 3:14 without affecting significantly the magnitude of the intrinsic binding constant.  相似文献   

14.
G DasGupta  E Reisler 《Biochemistry》1991,30(41):9961-9966
The binding of myosin subfragment 1 (S-1) to actin in the presence and absence of nucleotides was determined under conditions of partial saturation of actin, up to 80%, by Fab(1-7), the antibodies against the first seven N-terminal residues on actin. In the absence of nucleotides, the binding constant of S-1 to actin (2 x 10(7) M-1) was decreased by 1 order of magnitude by Fab(1-7). The binding of S-1 to actin caused only limited displacement of Fab, and between 30 and 50% of actin appeared to bind both proteins. In the presence of MgAMP.PNP, MgADP, and MgPPi and at low S-1 concentrations, the same antibodies caused a large decrease in the binding of S-1 to actin. However, the binding of S-1.nucleotide to actin in the presence of Fab(1-7) increased cooperatively with the increase in S-1 concentration. Also, in contrast to rigor conditions, there was no indication for the binding of Fab(1-7) and S-1.nucleotide to the same actin molecules. These results show a nucleotide-induced transition in the actomyosin interface, most likely related to the different roles of the N-terminal segment of actin in the binding of S-1 and S-1.nucleotide. The possible implications of these findings to the regulation of actomyosin interactions are discussed.  相似文献   

15.
Access to different intermediates that follow ATP cleavage in the catalytic cycle of skeletal muscle actomyosin is a major goal of studies that aim toward an understanding of chemomechanical coupling in muscle contraction. 2,4-Dinitrophenol (DNP, 10(-2) M) inhibits muscle contraction, even though it accelerates the ATPase activity of isolated myosin. Here we used myosin subfragment 1 (S1), acto-S1 and mammalian skinned fibers to investigate the action of DNP in the presence of actin. DNP increases acto-S1 affinity and at the same time reduces the maximum rate of turnover as [actin]-->infinity. In skinned fibers, isometric force is reduced to the same extent (K0.5 approximately equal to 6 mM). Although actin activates Pi release from S1 at all DNP concentrations tested, the combination of enhanced S1 activity and reduced acto-S1 activity leads to a reduction in the ratio of these two rates by a factor of 30 at the highest DNP concentration tested. This effect is seen at low as well as at high actin concentrations and is less pronounced with the analog meta-nitrophenol (MNP), which does not inhibit the acto-S1 ATPase. Arrhenius plots for acto-S1 are parallel and linear between 5 and 30 degrees C, indicating no abrupt shifts in rate-limiting step with either DNP or MNP. Analysis of the reduction in isometric force with increasing Pi concentrations suggests that DNP and MNP stabilize weakly bound cross-bridges (AM.ADP.Pi). In addition, MNP (10(-2) M) increases the apparent affinity for Pi.  相似文献   

16.
Shaw MA  Ostap EM  Goldman YE 《Biochemistry》2003,42(20):6128-6135
N-Benzyl-p-toluenesulfonamide (BTS) is a small organic molecule that specifically inhibits the contraction of fast skeletal muscle fibers. To determine the mechanism of inhibition by BTS, we performed a kinetic analysis of its effects on the elementary steps of the actomyosin subfragment-1 ATPase cycle. BTS decreases the steady-state acto-S1 ATPase rate approximately 10-fold and increases the actin concentration for half-maximal activation. BTS primarily affects three of the elementary steps of the reaction pathway. It decreases the rate of P(i) release >20-fold in the absence of actin and >100-fold in the presence of actin. It decreases the rate of S1.ADP dissociation from 3.9 to 0.8 s(-)(1) while decreasing the S1.ADP dissociation constant from 2.3 to 0.8 microM. BTS weakens the apparent affinity of S1.ADP for actin, increasing the K(d) from 7.0 to 29.5 microM. ATP binding to S1, hydrolysis, and the affinity of nucleotide-free S1 for actin are unaffected by BTS. Kinetic modeling indicates that the binding of BTS to myosin depends on actin association/dissociation and on nucleotide state. Our results suggest that the reduction of the acto-S1 ATPase rate is due to the inhibition of P(i) release, and the suppression of tension is due to inhibition of P(i) release in conjunction with the decreased apparent affinity of S1.ADP.P(i) and S1.ADP for actin.  相似文献   

17.
The ability of adenyl-5'-yl imidodiphosphate (AMP-PNP), ADP, and PPi to dissociate the actin.myosin subfragment 1 (S-1) complex was studied using an analytical ultracentrifuge with UV optics, which enabled the direct determination of the dissociated S-1. At mu = 0.22 M, pH 7.0, 22 degrees C, with saturating nucleotide present, ADP weakens the binding of S-1 to actin about 40-fold (K congruent to 10(5) M-1), while both AMP-PNP and PPi weakens the binding about 400-fold (K congruent to 10(4) M-1). This 10-fold stronger dissociating effect of AMP-PNP and PPi compared to ADP correlates with our data showing that the binding of AMP-PNP and PPi to S-1 is about 10-fold stronger than the binding of ADP. In contrast, the binding constants of ADP, AMP-PNP, and PPi to acto.S-1 are nearly identical (K congruent to 5 x 10(3) M-1). At 4 degrees C, AMP-PNP has only a 3-fold stronger dissociating effect than ADP and, similarly, our data suggest that the binding of AMP-PNP and ADP to S-1 is quite similar at 4 degrees C. AMP-PNP and PPi are, therefore, somewhat better dissociating agents than ADP, but the difference among these three ligands is quite small. These data also show that actin and nucleotide bind to separate but interacting sites on S-1 and that the S-1 molecules bind independently along the F-actin filament with a binding constant of about 1 x 10(7) M-1 at 22 degrees C and physiological ionic strength.  相似文献   

18.
The myosin SH2-50-kilodalton fragment cross-link: location and consequences   总被引:6,自引:0,他引:6  
Some of us recently described a new interthiol cross-link which occurs in the skeletal myosin subfragment 1-MgADP complex between the reactive sulfhydryl group "SH2" (Cys-697) and a thiol (named SH chi) of the 50-kilodalton (kDa) central domain of the heavy chain; this link leads to the entrapment of the nucleotide at the active site [Chaussepied, P., Mornet, D., & Kassab, R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2037-2041]. In the present study, we identify SH chi as Cys-540 of the 50-kDa fragment. The portion of the heavy chain including this residue and also extending to Cys-522 that is cross-linkable to the "SH1" thiol [Ue, K. (1987) Biochemistry 26, 1889-1894] is near the SH2-SH1 region. Furthermore, various spectral and enzymatic properties of the (Cys697-Cys540)-N,N'-p-phenylenedimaleimide (pPDM)-cross-linked myosin chymotryptic subfragment 1 (S-1) were established and compared to those for the well-known (SH1-SH2)-pPDM-cross-linked S-1. The circular dichroism spectra of the new derivative were similar to those of native S-1 complexed to MgADP. At 15 mM ionic strength, (Cys697-Cys540)-S-1 binds very strongly to unregulated actin (Ka = 7 X 10(6) M-1), and the actin binding is very weakly affected by ionic strength. Joining actin with the (Cys697-Cys540)-S-1 heavy chain, using 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, produces different species than does joining unmodified S-1 with actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
To improve our understanding of the physiological roles of parvalbumins, PA-1 (pI 4.78) and PA-2 (pI 4.97) parvalbumins were prepared from bullfrog skeletal muscle and their calcium binding properties were examined in a medium of constant ionic strength (I = 0.106, pH 6.80, at 20 degrees C) containing various concentrations of Mg2+ by using a metallo-indicator, tetramethylmurexide. Apparent binding constants for Ca2+ in the presence of Mg2+ changed in the manner expected if Ca2+ and Mg2+ compete for two independent homogeneous binding sites. The following values were obtained: for PA-1, KCa = 1 X 10(7) M-1, KMg = 900 M-1; for PA-2, KCa = 6 X 10(6) M-1, KMg = 830 M-1 (I = 0.106, pH 6.80, at 20 degrees C). The apparent binding constants are strongly dependent on temperature: at 10 degrees C for PA-1, KCa = 2 X 10(8) M-1, KMg = 10(4) M-1; for PA-2, KCa = 5 X 10(7) M-1, KMg = 5 X 10(3) M-1 (I = 0.106, pH 6.80). The dependence of the affinities for Ca2+ on ionic strength is similar to or less than that of GEDTA (EGTA). The affinities for Ca2+ and Mg2+ of parvalbumins are unchanged between pH 6.5 and 7.2.  相似文献   

20.
Actin labeled at Gln-41 with dansyl ethylenediamine (DED) via transglutaminase reaction was used for monitoring the interaction of myosin subfragment 1 (S1) with the His-40-Gly-42 site in the 38-52 loop on F-actin. Proteolytic digestions of F-actin with subtilisin and trypsin, and acto-S1 ATPase measurements on heat-treated F-actin revealed that the labeling of Gln-41 had a stabilizing effect on subdomain 2 and the actin filaments. DED on Gln-41 had no effect on the values of K(m) and Vmax of the acto-S1 ATPase and the sliding velocities of actin filaments in the in vitro motility assays. This suggests either that S1 does not bind to the 40-42 site on actin or that such binding is not functionally important. The binding of monoclonal antidansyl IgG to DED-F-actin did not affect acto-S1 binding in the absence of nucleotides, indicating that the 40-42 site does not contribute much to rigor acto-S1 binding. Myosin-induced changes in subdomain 2 on actin were manifested through an increase in the fluorescence of DED-F-actin, a decrease in the accessibility of the probe to collisional quenchers, and a partial displacement of antidansyl IgG from actin by S1. It is proposed that these changes in the 38-52 loop on actin originate from S1 binding to other myosin recognition sites on actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号