首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Whole parasite vaccines provide a unique opportunity for dissecting immune mechanisms and identify antigens that are targeted by immune responses which have the potential to mediate sterile protection against malaria infections. The radiation attenuated sporozoite (PfSPZ) vaccine has been considered the gold standard for malaria vaccines because of its unparalleled efficacy. The immunogenicity of this and other vaccines continues to be evaluated by using recombinant proteins or peptides of known sporozoite antigens. This approach, however, has significant limitations by relying solely on a limited number of known pathogen-associated immune epitopes. Using the full range of antigens expressed by the sporozoite will enable the comprehensive immune-profiling of humoral immune responses induced by whole parasite vaccines. To address this challenge, a novel ELISA based on sporozoites was developed.

Results

The SPZ-ELISA method described in this report can be performed with either freshly dissected sporozoites or with cryopreserved sporozoite lysates. The use of a fixative for reproducible coating is not required. The SPZ-ELISA was first validated using monoclonal antibodies specific for CSP and TRAP and then used for the characterization of immune sera from radiation attenuated sporozoite vaccinees.

Conclusion

Applying this simple and highly reproducible approach to assess immune responses induced by malaria vaccines, both recombinant and whole parasite vaccines, (1) will help in the evaluation of immune responses induced by antigenically complex malaria vaccines such as the irradiated SPZ-vaccine, (2) will facilitate and accelerate the identification of immune correlates of protection, and (3) can also be a valuable assessment tool for antigen discovery as well as down-selection of vaccine formulations and, thereby, guide vaccine design.
  相似文献   

2.
The PfCLAG9 has been extensively studied because their immunogenicity. Thereby, the gene product is important for therapeutics interventions and a potential vaccine candidate. Antibodies against synthetic peptides corresponding to selected sequences of the Plasmodium falciparum antigen PfCLAG9 were found in sera of falciparum malaria patients from Rondônia, in the Brazilian Amazon. Much higher antibody titres were found in semi-immune and immune asymptomatic parasite carriers than in subjects suffering clinical infections, corroborating original findings in Papua Guinea. However, sera of Plasmodium vivax patients from the same Amazon area, in particular from asymptomatic vivax parasite carriers, reacted strongly with the same peptides. Bioinformatic analyses revealed regions of similarity between P. falciparum Pfclag9 and the P. vivax ortholog Pvclag7. Indirect fluorescent microscopy analysis showed that antibodies against PfCLAG9 peptides elicited in BALB/c mice react with human red blood cells (RBCs) infected with both P. falciparum and P. vivax parasites. The patterns of reactivity on the surface of the parasitised RBCs are very similar. The present observations support previous findings that PfCLAG9 may be a target of protective immune responses and raises the possibility that the cross reactive antibodies to PvCLAG7 in mixed infections play a role in regulate the fate of Plasmodium mixed infections.  相似文献   

3.
Transmission of malaria parasites from humans to Anopheles mosquitoes can be inhibited by specific antibodies elicited during malaria infection, which target surface Plasmodium gametocyte/gamete proteins. Some of these proteins may have potential for vaccine development. Pvs48/45 is a P. vivax gametocyte surface antigen orthologous to Pfs48/45, which may play a role during parasite fertilization and thus has potential for transmission blocking (TB) activity. Here we describe the expression of a recombinant Pvs48/45 protein expressed in Escherichia coli as a ∼60kDa construct which we tested for antigenicity using human sera and for its immunogenicity and transmission blocking activity of specific anti-mouse and anti-monkey Pvs48/45 antibodies. The protein reacted with sera of individuals from malaria-endemic areas and in addition induced specific IgG antibody responses in BALB/c mice and Aotus l. griseimembra monkeys. Sera from both immunized animal species recognized native P. vivax protein in Western blot (WB) and immunofluorescence assays. Moreover, sera from immunized mice and monkeys produced significant inhibition of parasite transmission to An. Albimanus mosquitoes as shown by membrane feeding assays. Results indicate the presence of reactive epitopes in the Pvs48/45 recombinant product that induce antibodies with TB activity. Further testing of this protein is ongoing to determine its vaccine potential.  相似文献   

4.
Trypanosoma cruzi expresses oligopeptidase B and cathepsin B that have important functions in the interaction with mammalian host cells. In this study, we demonstrated that sera from both chagasic rabbits and humans have specific antibodies to highly purified native oligopeptidase B and cathepsin B. Levels of antibodies to cathepsin B were higher than those observed to oligopeptidase B by absorbance values recorded upon ELISA. We next showed that 90% and 30% of sera from individuals with mucocutaneous leishmaniasis have antibodies that recognize oligopeptidase B and cathepsin B as antigens, respectively. In addition, 55% and 40% of sera from kala-azar patients have antibodies to oligopeptidase B and cathepsin B, respectively. Sera from malaria patients did not recognize the proteases as antigens. Despite high levels of specific antibodies, sera from T. cruzi-infected patients did not inhibit the activities of either oligopeptidase B or cathepsin B. Furthermore, sera or IgG purified from either infected or non-infected individuals enhanced the enzymatic activity of the secreted oligopeptidase B. Oligopeptidase B secreted by trypomastigotes and cathepsin B released upon parasite lysis retain their enzymatic activities and may be associated with Chagas' disease pathogenesis by hydrolyzing host proteins and inducing host immune responses.  相似文献   

5.

Background

Surrogate markers of protective immunity to malaria in humans are needed to rationalize malaria vaccine discovery and development. In an effort to identify such markers, and thereby provide a clue to the complex equation malaria vaccine development is facing, we investigated the relationship between protection acquired through exposure in the field with naturally occurring immune responses (i.e., induced by the parasite) to molecules that are considered as valuable vaccine candidates.

Methods and Findings

We analyzed, under comparative conditions, the antibody responses of each of six isotypes to five leading malaria vaccine candidates in relation to protection acquired by exposure to natural challenges in 217 of the 247 inhabitants of the African village of Dielmo, Senegal (96 children and 121 older adolescents and adults). The status of susceptibility or resistance to malaria was determined by active case detection performed daily by medical doctors over 6 y from a unique follow-up study of this village. Of the 30 immune responses measured, only one, antibodies of the IgG3 isotype directed to merozoite surface protein 3 (MSP3), was strongly associated with clinical protection against malaria in all age groups, i.e., independently of age. This immunological parameter had a higher statistical significance than the sickle cell trait, the strongest factor of protection known against Plasmodium falciparum. A single determination of antibody was significantly associated with the clinical outcome over six consecutive years in children submitted to massive natural parasite challenges by mosquitoes (over three parasite inoculations per week). Finally, the target epitopes of these antibodies were found to be fully conserved.

Conclusions

Since anti-MSP3 IgG3 antibodies can naturally develop along with protection against P. falciparum infection in young children, our results provide the encouraging indication that these antibodies should be possible to elicit by vaccination early in life. Since these antibodies have been found to achieve parasite killing under in vitro and in vivo conditions, and since they can be readily elicited by immunisation in naïve volunteers, our immunoepidemiological findings support the further development of MSP3-based vaccine formulations.  相似文献   

6.
The C-terminal region of the merozoite surface protein 1 (MSP1_(19)) is one of the mostpromising vaccine candidates against the erythrocytic forms of malaria.In the present study,a gene encodingPlasmodium falciparum MSP1_(19) was expressed in yeast Pichia pastoris.A non-glycosylated form of therecombinant protein MSP1_(19) was purified from culture medium.This recombinant protein maintains itsantigenicity.Significant immune responses were seen in C57BL/6 mice after the second immunization.Moreover,the specific antibodies recognized the native antigens of P.falciparum,The prevailing isotypesof immunoglobulin (Ig)G associated with immunization were IgG1,IgG2a and IgG2b.The antibodiesisolated from mouse sera immunized with MSP1_(19) can inhibit parasite growth in vitro.Based on theseimmunological studies,we concluded that MSP1_(19) deserves further evaluation in pre-clinical immunizationsagainst P.falciparum.  相似文献   

7.
The use of multi-epitopes has been considered as a promising strategy to overcome the obstacle of antigenic variation in malarial vaccine development. Previously, we constructed a multi-epitope artificial antigen, Malaria Random Constructed Antigen-1(M.RCAg-1), to optimize expression of the antigen, and we subcloned the gene into three prokaryotic expression vectors that contain different fusion tags at the N-terminus. Three recombinant proteins expressed by these vectors, named M.RCAg-1/Exp.V-1, V-2, and V-3, were purified after the cleavage of the fusion tag. All three recombinant proteins were able to induce similar levels of antigenicity in BALB/c murine models. However, the antibody responses against the individual epitope peptides of the recombinant products were dramatically different. Additionally, the different epitopes elicited various CD4(+) T-cell responses, as shown by the resulting lymphocyte proliferation and varied IFN-γ and IL-4 levels determined by EILSPOT; however, each could be distinctly recognized by sera derived from malaria patients. Additionally, the rabbit antibody induced by these proteins showed diverse efficacy in malaria parasite growth inhibition assays in vitro. Furthermore, analysis via circular dichroism spectroscopy confirmed that the secondary structure was different among these recombinant proteins. These results suggest that the expressed multi-epitope artificial antigens originating from the different vector fusion peptides indeed affect the protein folding and, subsequently, the epitope exposure. Thus, these proteins are able to induce both distinct humoral and cellular immune responses in animal models, and they affect the efficacy of immune inhibition against the parasite. This work should lead to a further understanding of the impact of vector fusion peptides on the conformation and immune reactivity of recombinant proteins and could provide a useful reference for the development of artificial multi-epitope vaccines.  相似文献   

8.
The native state of common-type acylphosphatase (AcP) elicits two alpha-helices spanning residues 22-32 and 55-67 in the protein sequence. A peptide corresponding to the second alpha-helix (helix-2) of the protein was used to select phage antibodies consisting of a single chain fragment variable. The selection was performed in the presence of trifluoroethanol, a cosolvent known to induce the formation of helical structure in peptides and proteins. Phage scFv antibodies capable of binding the peptide specifically in a trifluoroethanol-induced alpha-helical conformation were isolated by affinity selection (biopanning). Some of these scFvs were also able to bind the native protein but not the peptide in a non-helical unstructured state. This indicates that the structural determinant recognized by the selected antibodies is the alpha-helical conformation of this specific region, rather than simply its amino acid sequence. This study shows that phage display libraries can be used to raise antibodies one can use as reagents able to target regions of a protein with a specific native-like secondary structure.  相似文献   

9.
10.
Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.  相似文献   

11.
The major merozoite surface Ag (gp195) of Plasmodium falciparum has been shown to protect monkeys against parasite infection, and gp195-based synthetic peptides and recombinant polypeptides have been evaluated as potential malaria vaccines. A major problem in developing a gp195-based recombinant vaccine has been the difficulty in obtaining a recombinant polypeptide that is immunologically equivalent to the native protein. In this study, the carboxyl-terminal processing fragment (p42) of gp195 was produced in yeast and in a baculovirus recombinant system. Immunologic analyses indicated that the secreted baculovirus p42 (BVp42) expressed native, disulfide-dependent conformational epitopes, whereas these epitopes were poorly represented in the intracellular yeast p42. BVp42, but not yeast p42, was also recognized by the majority of gp195-specific antibodies of animals immunized with purified native gp195, indicating that the anti-gp195 response of these animals was focused on conformational determinants of the p42 processing fragment. Sera against native gp195 of congenic mice of diverse H-2 haplotypes recognized the BVp42 polypeptide, demonstrating that a genetically heterogeneous population is capable of responding to p42 epitopes. BVp42 was highly immunogenic and induced high titers of antibodies that were cross-reactive with purified native gp195 in an ELISA and also reacted with schizonts and merozoites by immunofluorescence. Anti-BVp42 antibodies completely inhibited the in vitro growth of the malaria parasite, whereas anti-yeast p42 antibodies had no effect. These results indicate that native, conformational epitopes of p42 are critical for the induction of gp195-specific, parasite growth-inhibitory antibodies and that the BVp42 polypeptide efficiently induces antibodies specific for these native determinants.  相似文献   

12.
Studies on the natural immune responses to the sexual stages of malaria parasites have been reviewed in the context of human malaria transmission-blocking vaccines. Antibodies against the sexual stages of the malaria parasite, gametocytes and gametes, are readily evoked by natural malaria infections. These antibodies that suppress infectivity at high concentrations can, at low concentrations, enhance the development of the parasite in the mosquito; however, because enhancing antibodies are prevalent during natural malaria infections, it is likely that a vaccine would rapidly boost these antibodies to blocking levels. The immunogenicity of sexual stage antigens appears to be constrained in the human host, probably due to T epitope polymorphism and MHC restriction in humans. These constraints apply mainly to those antigens that are sensitive targets of host immunity such as the gamete surface antigens and not to internal gamete antigens, indicating that antigenic polymorphism may have evolved in response to immune selection pressure. Evidence for immunosuppression of the host by exposure to endemic malaria is presented and its consequences on vaccine development are discussed.  相似文献   

13.
Malaria during pregnancy in Plasmodium falciparum endemic regions is a major cause of mortality and severe morbidity. VAR2CSA is the parasite ligand responsible for sequestration of Plasmodium falciparum infected erythrocytes to the receptor chondroitin sulfate A (CSA) in the placenta and is the leading candidate for a placental malaria vaccine. Antibodies induced in rats against the recombinant DBL4ε domain of VAR2CSA inhibit the binding of a number of laboratory and field parasite isolates to CSA. In this study, we used a DBL4ε peptide-array to identify epitopes targeted by DBL4ε-specific antibodies that inhibit CSA-binding of infected erythrocytes. We identified three regions of overlapping peptides which were highly antigenic. One peptide region distinguished itself particularly by showing a clear difference in the binding profile of highly parasite blocking IgG compared to the IgG with low capacity to inhibit parasite adhesion to CSA. This region was further characterized and together these results suggest that even though antibodies against the synthetic peptides which cover this region did not recognize native protein, the results using the mutant domain suggest that this linear epitope might be involved in the induction of inhibitory antibodies induced by the recombinant DBL4ε domain.  相似文献   

14.
The anamnestic antibody response to synthetic peptide antimalarial vaccines is under Ir gene control. It has therefore been inferred that the development of antibody responses to the native repetitive Ag of malaria parasites also requires linkage of T and B cell epitopes, presentation of Ag in the context of MHC class II components, and cognate T cell help for antibody production. In this study, we sought to test this assumption, by utilizing classical protocols to determine whether the antibody response to the repetitive surface Ag of malaria sporozoites, the circumsporozoite (CS) protein, is under Ir gene control. In contrast to vaccine constructs, such as recombinant proteins or synthetic peptides, secondary responses to the repetitive oligomeric domains of the native CS protein of intact malaria sporozoites do not require the presence of Ag-specific Th cells. Conferral of CS-specific Th cells does not appear to influence the magnitude of this thymus-independent response to sporozoites. In further contrast to synthetic CS analogs, exposure to the parasite appears to be associated with low levels of Ag-specific Th cell sensitization. These observations suggest a functional role in immune evasion for the immunodominant repetitive domains found within protein Ag of malaria and other parasites.  相似文献   

15.

Introduction

There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated.

Methods

This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured.

Results

On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients.

Conclusion

In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status.  相似文献   

16.
17.

Background

The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs'' sera.

Methodology/Main Findings

Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws'' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies.

Conclusions/Significance

This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as successful immunogens in vaccine formulations against VL.  相似文献   

18.
The identification of sequences involved in binding to erythrocytes is an important step for understanding the molecular basis of merozoite-erythrocyte interactions that take place during invasion of the Plasmodium falciparum malaria parasite into host cells. Several molecules located in the apical organelles (micronemes, rhoptry, dense granules) of the invasive-stage parasite are essential for erythrocyte recognition, invasion, and establishment of the nascent parasitophorous vacuole. Particularly, it has been demonstrated that rhoptry proteins play an important role in binding to erythrocyte surface receptors, among which is the PfRhopH3 protein, which triggers important immune responses in patients from endemic regions. It has also been reported that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes, further supporting its direct involvement in erythrocyte invasion processes. In this study, PfRhopH3 consecutive peptides were synthesized and tested in erythrocyte binding assays for identifying those regions mediating binding to erythrocytes. Fourteen PfRhopH3 peptides presenting high specific binding activity were found, whose bindings were saturable and presented nanomolar dissociation constants. These high-activity binding peptides (HABPs) were characterized by having alpha-helical structural elements, as determined by circular dichroism, and having receptors of a possible sialic acid-dependent and/or glycoprotein-dependent nature, as evidenced in enzyme-treated erythrocyte binding assays and further corroborated by cross-linking assay results. Furthermore, these HABPs inhibited merozoite in vitro invasion of normal erythrocytes at 200 microM by up to 60% and 90%, suggesting that some RhopH3 protein regions are involved in the P. falciparum erythrocyte invasion.  相似文献   

19.
Pregnancy-associated malaria (PAM) is associated with the massive sequestration of erythrocytes infected with CSA-binding parasites in the placenta. Natural protective immunity against PAM is acquired during the course of pregnancies, with the development of anti-PfEMP1 antibodies recognizing placental infected erythrocytes (IEs) from different geographical regions. Mouse monoclonal antibodies (mabs) were raised against Plasmodium falciparum variant surface proteins expressed by CSA-binding parasites. These mabs blocked 0-60% of CSA-binding parasite adhesion and immunoprecipitated a 350 kDa 125I-labeled PfEMP1(CSA). Two var2CSA domains expressed on the surface of CHO cells (DBL5epsilon and DBL6epsilon) were identified as the targets of three of four antibodies inhibiting CSA binding. Two of these antibodies also recognized either DBL2x or DBL3x, suggesting that some epitopes may be common to several var2CSA domains. These mabs also specifically selected CSA-binding IEs and facilitated the purification from IE extracts of the native var2CSA ligand. This purified ligand elicited antibodies in immunized mice inhibiting efficiently IE(CSA) cytoadhesion. Based on our findings, we provide the first demonstration that the parasite var2CSA surface protein can elicit inhibitory antibodies and define here the subunits of the var2CSA ligand suitable for use in vaccine development.  相似文献   

20.
There is an urgent need for a vaccine against malaria and proteins on the surface of the merozoite are good targets for development as vaccine candidates because they are exposed to antibody. However, it is possible that the parasite has evolved mechanisms to evade a protective immune response to these proteins. Merozoite surface protein 1 (MSP-1) is a candidate for vaccine development and its C-terminal sequence is the target of protective antibody. MSP-1 is cleaved by proteases in two processing steps, the second step releases the bulk of the protein from the surface and goes to completion during successful red blood cell invasion. Antibodies binding to the C-terminus of Plasmodium falciparum MSP-1 can inhibit both the processing and erythrocyte invasion. Other antibodies that bind to either the C-terminal sequence or elsewhere in the molecule are 'blocking' antibodies, which on binding prevent the binding of the inhibitory antibodies. Blocking antibodies are a mechanism of immune evasion, which may be based on antigenic conservation rather than diversity. This mechanism has a number of implications for the study of protective immunity and the development of malaria vaccines, emphasising the need for appropriate functional assays and careful design of the antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号