首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A role for decorin in the remodeling of myocardial infarction.   总被引:3,自引:0,他引:3  
Because the small leucine-rich proteoglycan decorin has been implicated in regulation of collagen fibrillogenesis leading to proper extracellular matrix assembly, we hypothesized it could play a key role in cardiac fibrosis following myocardial infarction. In this study we ligated the left anterior descending coronary artery in wildtype and decorin-null mice to produce large infarcts in the anterior wall of the left ventricle. At early stages post-coronary occlusion the myocardial infarction size did not appreciably differ between the two genotypes. However, we found a wider distribution of collagen fibril sizes with less organization and loose packing in mature scar from decorin-null mice. Thus, we tested the hypothesis that these abnormal collagen fibrils would adversely affect post-infarction mechanics and ventricular remodeling. Indeed, scar size, right ventricular remote hypertrophy, and left ventricular dilatation were greater in decorin-null animals compared with wildtype littermates 14 days after acute myocardial infarction. Echocardiography revealed depressed left ventricular systolic function between 4 and 8 weeks post-ischemia in the decorin-null animals. These changes indicate that decorin is required for the proper fibrotic evolution of myocardial infarctions, and that its absence leads to abnormal scar tissue formation. This might contribute to aneurysmal ventricular dilatation, remote hypertrophy, and depressed ventricular function.  相似文献   

2.
Matricellular proteins such as SPARC, thrombospondin 1 and 2, and tenascin C and X subserve important functions in extracellular matrix synthesis and cellular adhesion to extracellular matrix. By virtue of its reported interaction with collagen I and deadhesive activity on cells, we hypothesized that hevin, a member of the SPARC gene family, regulates dermal extracellular matrix and collagen fibril formation. We present evidence for an altered collagen matrix and levels of the proteoglycan decorin in the normal dermis and dermal wound bed of hevin-null mice. The dermal elastic modulus was also enhanced in hevin-null animals. The levels of decorin protein secreted by hevin-null dermal fibroblasts were increased by exogenous hevin in vitro, data indicating that hevin might regulate both decorin and collagen fibrillogenesis. We also report a decorin-independent function for hevin in collagen fibrillogenesis. In vitro fibrillogenesis assays indicated that hevin enhanced fibril formation kinetics. Furthermore, cell adhesion assays indicated that cells adhered differently to collagen fibrils formed in the presence of hevin. Our observations support the capacity of hevin to modulate the structure of dermal extracellular matrix, specifically by its regulation of decorin levels and collagen fibril assembly.  相似文献   

3.
Decorin, a prototype small leucine-rich proteoglycan, regulates a vast array of cellular processes including collagen fibrillogenesis, wound repair, angiostasis, tumor growth, and autophagy. This functional versatility arises from a wide array of decorin/protein interactions also including interactions with its single glycosaminoglycan side chain. The decorin-binding partners encompass numerous categories ranging from extracellular matrix molecules to cell surface receptors to growth factors and enzymes. Despite the diversity of the decorin interacting network, two main roles emerge as prominent themes in decorin function: maintenance of cellular structure and outside-in signaling, culminating in anti-tumorigenic effects. Here we present contemporary knowledge regarding the decorin interacting network and discuss in detail the biological relevance of these pleiotropic interactions, some of which could be targeted by therapeutic interventions.  相似文献   

4.
The proteoglycan decorin is known to affect both the fibrillogenesis and the resulting ultrastructure of in vitro polymerized collagen gels. However, little is known about its effects on mechanical properties. In this study, 3D collagen gels were polymerized into tensile test specimens in the presence of decorin proteoglycan, decorin core protein, or dermatan sulfate (DS). Collagen fibrillogenesis, ultrastructure, and mechanical properties were then quantified using a turbidity assay, 2 forms of microscopy (SEM and confocal), and tensile testing. The presence of decorin proteoglycan or core protein decreased the rate and ultimate turbidity during fibrillogenesis and decreased the number of fibril aggregates (fibers) compared to control gels. The addition of decorin and core protein increased the linear modulus by a factor of 2 compared to controls, while the addition of DS reduced the linear modulus by a factor of 3. Adding decorin after fibrillogenesis had no effect, suggesting that decorin must be present during fibrillogenesis to increase the mechanical properties of the resulting gels. These results show that the inclusion of decorin proteoglycan during fibrillogenesis of type I collagen increases the modulus and tensile strength of resulting collagen gels. The increase in mechanical properties when polymerization occurs in the presence of the decorin proteoglycan is due to a reduction in the aggregation of fibrils into larger order structures such as fibers and fiber bundles.  相似文献   

5.
The small leucine-rich proteoglycan decorin has been demonstrated to be a key regulator of collagen fibrillogenesis; decorin deficiencies lead to irregularly shaped collagen fibrils and weakened material behavior in postnatal murine connective tissues. In an in vitro investigation of the contributions of decorin to tissue organization and material behavior, model tissues were engineered by seeding embryonic fibroblasts, harvested from 12.5-13.5 days gestational aged decorin null (Dcn(-/-)) or wild-type mice, within type I collagen gels. The resulting three-dimensional collagen matrices were cultured for 4 weeks under static tension. The collagen matrices seeded with Dcn(-/-) cells exhibited greater contraction, cell density, ultimate tensile strength, and elastic modulus than those seeded with wild-type cells. Ultrastructurally, the matrices seeded with Dcn(-/-) cells contained a greater density of collagen. The decorin-null tissues contained more biglycan than control tissues, suggesting that this related proteoglycan compensated for the absence of decorin. The effect of transforming growth factor-beta (TGF-beta), which is normally sequestered by decorin, was also investigated in this study. The addition of TGF-beta1 to the matrices seeded with wild-type cells improved their contraction and mechanical strength, whereas blocking TGF-beta1 in the Dcn(-/-) cell-seeded matrices significantly reduced the collagen gel contraction. These results indicate that the inhibitory interaction between decorin and TGF-beta1 significantly influenced the matrix organization and material behavior of these in vitro model tissues.  相似文献   

6.
During limb skeletal muscle formation, committed muscle cells proliferate and differentiate in the presence of extracellular signals that stimulate or repress each process. Proteoglycans are extracellular matrix organizers and modulators of growth factor activities, regulating muscle differentiation in vitro. Previously, we characterized proteoglycan expression during early limb muscle formation and showed a spatiotemporal relation between the onset of myogenesis and the expression of decorin, an important muscle extracellular matrix component and potent regulator of TGF-beta activity. To evaluate decorin's role during in vivo differentiation in committed muscle cells, we grafted wild type and decorin-null myoblasts onto chick limb buds. The absence of decorin enhanced the migration and distribution of myoblasts in the limb, correlating with the inhibition of skeletal muscle differentiation. Both phenotypes were reverted by de novo decorin expression. In vitro, we determined that both decorin core protein and its glycosaminoglycan chain were required to reverse the migration phenotype. Results presented here suggest that the enhanced migration observed in decorin-null myoblasts may not be dependent on chemotactic growth factor signaling nor the differentiation status of the cells. Decorin may be involved in the establishment and/or coordination of a critical myoblast density, through inhibition of migration, that permits normal muscle differentiation during embryonic myogenesis.  相似文献   

7.
The ubiquity of collagen in mammalian tissues, with its host of structural and chemical functions, has motivated its research in many fields, including tissue engineering. The organization of collagen is known to affect cell behavior and the resulting structural integrity of tissues or tissue engineered scaffolds. Of particular interest are proteoglycan (PG) interactions with collagen and their influence on collagen assembly. These natural molecules provide unique chemical and mechanical cues and are known to modulate collagen fibrillogenesis. Research has been limited to PGs extracted and purified from animal sources and has the drawbacks of limited design control and costly purification. Consequently, we have designed a synthetic peptidoglycan based on decorin, a collagen-binding PG. The synthetic peptidoglycan containing a collagen-binding peptide with a single dermatan sulfate side chain specifically binds to collagen, delays fibrillogenesis, and increases collagen gel stiffness as decorin does. This design can be tailored with respect to the peptide sequence and attached glycosaminoglycan chain, offering unique control with relative ease of manufacturing.  相似文献   

8.
The small proteoglycan decorin plays an important role in the organisation of the extracellular matrix by binding to several components, including collagen and fibronectin. In this work, we report the dose-dependent and saturable interaction of decorin with the adhesive glycoprotein, von Willebrand factor (VWF). This interaction was mediated by the glycosaminoglycan side chain of decorin and was critically regulated by the degree of sulfation, but not by the amount of iduronic acid. Both chondroitin sulfate and dermatan sulfate, in addition to heparin, were found to bind VWF equally well. Although soluble decorin prevented VWF binding to heparin, purified VWF-A1 domain failed to interact with the proteoglycan. These results identify VWF as a new partner for the small proteoglycan, decorin, in the structural organisation of the extracellular matrix.  相似文献   

9.
Collagen has found use as a scaffold material for tissue engineering as well as a coating material for implants with a view to enhancing osseointegration through mimicry of the bone extracellular matrix in vivo. The aim of this study was to compare the collagen types I, II, and III with regard to their ability to bind the small leucine-rich proteoglycans (SLRPs) decorin and biglycan during fibrillogenesis in vitro in phosphate buffer. In addition, the influence of SLRPs on the proportion of collagen molecules incorporated into fibrils during fibrillogenesis in vitro at high and low ionic strength was investigated, as were their effects on the morphology of collagen fibrils and the speed of fibrillogenesis. Considerably more biglycan than decorin was bound by all three collagen types. Collagen II bound significantly more SLRPs in fibrils than collagen I and III. Decorin and biglycan decreased the proportion of collagen molecules of all three collagen types incorporated into fibrils in similar fashion. Biglycan affected neither fibril diameter nor the speed of fibrillogenesis. Decorin reduced the fibril diameter of all three collagen types. The differences in SLRP-binding ability between collagen types could be of significance when selecting collagen type and/or SLRPs as scaffold materials for tissue engineering or implant coatings.  相似文献   

10.
Sequence analysis showed that Staphylococcus aureus V8 protease cleaved the core protein of the small dermatan sulfate proteoglycan of bovine tendon (PGII) on the carboxy side of a glutamic acid residue located 17 amino acids from the N-terminus of the intact molecule. The remaining 40 kDa core protein fragment inhibited collagen fibrillogenesis in an in vitro assay. V8 protease readily generated this fragment in tendon tissue, but it was not released from the tissue during treatment. These results indicate that neither the 17-amino acid N-terminal peptide nor the glycosaminoglycan chain attached to this peptide is required for maintaining the interaction of this proteoglycan with a collagen matrix.  相似文献   

11.
Kao WW  Liu CY 《Glycoconjugate journal》2002,19(4-5):275-285
Lumican and keratocan are members of the small leucine-rich proteoglycan (SLRP) family, and are the major keratan sulfate (KS) proteoglycans in corneal stroma. Both lumican and keratocan are essential for normal cornea morphogenesis during embryonic development and maintenance of corneal topography in adults. This is attributed to their bi-functional characteristic (protein moiety binding collagen fibrils to regulate collagen fibril diameters, and highly charged glycosaminoglycan (GAG) chains extending out to regulate interfibrillar spacings) that contributes to their regulatory role in extracellular matrix assembly. The absence of lumican leads to formation of cloudy corneas in homozygous knockout mice due to altered collagenous matrix characterized by larger fibril diameters and disorganized fibril spacing. In contrast, keratocan knockout mice exhibit thin but clear cornea with insignificant alteration of stromal collaegenous matrix. Mutations of keratocan cause cornea plana in human, which is often associated with glaucoma. These observations suggest that lumican and keratocan have different roles in regulating formation of stromal extracellular matrix. Experimental evidence indicates that lumican may have additional biological functions, such as modulation of cell migration and epithelium-mesenchyme transition in wound healing and tumorgenesis, besides regulating collagen fibrillogenesis. Published in 2003.  相似文献   

12.
Decorin is a small leucine-rich extracellular matrix proteoglycan composed of a core protein with a single glycosaminoglycan (GAG) chain near the N-terminus and N-glycosylated at three potential sites. Decorin is involved in the regulation of formation and organization of collagen fibrils, modulation of the activity of growth factors such as transforming growth factor beta (TGF-beta), and exerts other effects on cell proliferation and behavior. Increasing evidences show that decorin plays an important role in fibrogenesis by regulating TGF-beta, a key stimulator of fibrosis, and by directly modulating the degradation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). In this study, the core protein of human decorin was cloned and expressed in Escherichia coli. The purified recombinant human decorin (rhDecorin) significantly inhibited the proliferation of LX-2 cells, a human HSC cell line, stimulated by TGF-beta1. RT-PCR result showed that the expression of metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were reduced by rhDecorin in LX-2 cells stimulated by TGF-beta1. Furthermore, the protein expression of smooth muscle-alpha-actin (alpha-SMA), collagen type III and phosphorylated Smad2 (p-Smad2) was significantly decreased in the presence of rhDecorin. rhDecorin also reduced fibrillogenesis of collagen type I in a dose-dependent manner. Gene expression profiles of LX-2 cells stimulated by TGF-beta1 in the presence and the absence of rhDecorin were obtained by using cDNA microarray technique and differentially expressed genes were identified to provide further insight into the molecular action mechanism of decorin on LX-2 cells.  相似文献   

13.
Collagen fibrils were obtained in vitro by aggregation from acid-soluble type I collagen at different initial concentrations and with the addition of decorin core or intact decorin. All specimens were observed by scanning electron microscopy and atomic force microscopy. In line with the findings of other authors, lacking decorin, collagen fibrils undergo an extensive lateral association leading to the formation of a continuous three-dimensional network. The addition of intact decorin or decorin core was equally effective in preventing lateral fusion and restoring the normal fibril appearance. In addition, the fibril diameter was clearly dependent on the initial collagen concentration but not on the presence/absence of proteoglycans. An unusual fibril structure was observed as a result of a very low initial collagen concentration, leading to the formation of huge, irregular superfibrils apparently formed by the lateral coalescence of lesser fibrils, and with a distinctive coil-structured surface. Spots of incomplete fibrillogenesis were occasionally found, where all fibrils appeared made of individual, interwined subfibrils, confirming the presence of a hierarchical association mechanism.  相似文献   

14.
Decorin belongs to the small leucine proteoglycans family and is considered to play an important role in extracellular matrix organization. Experimental studies suggest that decorin is required for the assembly of collagen fibrils, as well as for the development of proper tissue mechanical properties. In tendons, decorins tie adjoining collagen fibrils together and probably guarantee the mechanical coupling of fibrils. The decorin molecule consists of one core protein and one glycosaminoglycan chain covalently linked to a serine residue of the core protein. Several studies have indicated that each core protein binds to the surface of collagen fibrils every 67 nm, by interacting non-covalently to one collagen molecule of the fibril surface, while the decorin glycosaminoglycans extend from the core protein to connect to another decorin core protein laying on adjacent fibril surface. The present paper investigates the complex composed of one decorin core protein and one collagen molecule in order to obtain their binding force. For this purpose, molecular models of collagen molecules type I and decorin core protein were developed and their interaction energies were evaluated by means of the molecular mechanics approach. Results show that the complex is characterized by a maximum binding force of about 12.4 x 10(3) nN and a binding stiffness of 8.33 x 10(-8) N/nm; the attained binding force is greater than the glycosaminoglycan chain's ultimate strength, thus indicating that overloads are likely to damage the collagen fibre's mechanical integrity by disrupting the glycosaminoglycan chains rather than by causing decorin core protein detachment from the collagen fibril.  相似文献   

15.
Decorin is a small leucine-rich extracellular matrix proteoglycan composed of a core protein with a single glycosaminoglycan (GAG) chain near the N-terminus and N-glycosylated at three potential sites. Decorin is involved in the regulation of formation and organization of collagen fibrils, modulation of the activity of growth factors such as transforming growth factor β (TGF-β), and exerts other effects on cell proliferation and behavior. Increasing evidences show that decorin plays an important role in fibrogenesis by regulating TGF-β, a key stimulator of fibrosis, and by directly modulating the degradation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). In this study, the core protein of human decorin was cloned and expressed in Escherichia coli. The purified recombinant human decorin (rhDecorin) significantly inhibited the proliferation of LX-2 cells, a human HSC cell line, stimulated by TGF-β1. RT-PCR result showed that the expression of metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were reduced by rhDecorin in LX-2 cells stimulated by TGF-β1. Furthermore, the protein expression of smooth muscle-α-actin (α-SMA), collagen type III and phosphorylated Smad2 (p-Smad2) was significantly decreased in the presence of rhDecorin. rhDecorin also reduced fibrillogenesis of collagen type I in a dose-dependent manner. Gene expression profiles of LX-2 cells stimulated by TGF-β1 in the presence and the absence of rhDecorin were obtained by using cDNA microarray technique and differentially expressed genes were identified to provide further insight into the molecular action mechanism of decorin on LX-2 cells.  相似文献   

16.
Skin undergoes dramatic age-related changes in its mechanical properties, including changes in tissue hydration and resiliency. Proteoglycans are macromolecular conjugates of protein and carbohydrate (glycosaminoglycan) which are involved in these tissue properties. In order to examine whether age-related changes in skin proteoglycans may contribute to the age-related changes in the mechanical properties of skin, proteoglycans from human skin of various ages were extracted and analyzed. Samples were obtained from two different fetal ages, from mature skin, and from senescent skin. As a function of age, there is a decrease in the proportion of large chondroitin sulfate proteoglycans (versican) and a concomitant increase in the proportion of small dermatan sulfate proteoglycans (decorin). Based on reactivity with antibodies to various chondroitin sulfate epitopes, fetal versican differs from the versican found in older skin with respect to the chondroitin sulfate chains. Also, the decorin of fetal skin is slightly larger, while the decorin of older skin shows greater polydispersity in both its size and its charge to mass ratio. There are also age-related differences in the size and polydispersity of the core proteins of decorin. The most pronounced change in skin proteoglycans is the appearance in mature skin of a proteoglycan which is smaller than decorin, but which has the same amino terminal amino acid sequence as decorin. This small proteoglycan is abundant in mature skin and may be a catabolic fragment of decorin or an alternatively spliced form of decorin. In light of the known ability of decorin to influence collagen fibrillogenesis and fibril diameter, the appearance of this small decorin-related proteoglycan may have a significant effect on skin elasticity. The observation that proteoglycans in skin show dramatic age-related differences suggests that these changes may be involved in the age-related changes in the physical properties of skin.  相似文献   

17.
Human osteosarcoma cells express a 78-kDa proteoglycan core protein to which an asparagine-bound oligosaccharide, O-glycosidically linked oligosaccharides and probably only a single chondroitin 6-sulfate chain of 29-kDa are bound. Prior to O-glycosylation, the N-glycosylated core protein exhibits a mass of 83 kDa. Upon digestion of the secreted proteoglycan with chondroitin ABC lyase a mature core protein with an apparent molecular mass of 106 kDa is obtained. Smaller amounts of core proteins of 101 and 115 kDa can be detected occasionally. The glycosaminoglycan composition and the relative molecular mass of the glycosaminoglycan chain distinguish this proteoglycan, tentatively named proteoglycan 100 (PG-100), from biglycan (small proteoglycan I) and decorin (small proteoglycan II) which are also expressed by osteosarcoma cells. An antiserum against PG-100 shows partial cross-reactivity with decorin, but in contrast to the latter proteoglycan it does not bind to type I collagen fibrils. PG-100 is not a unique product of osteosarcoma cells. It has also been found in the secretions of human skin fibroblasts.  相似文献   

18.
Decorin is a small, leucine-rich proteoglycan that binds to collagen and regulates fibrillogenesis. We hypothesized that decorin binding to collagen inhibits phagocytosis of collagen fibrils. To determine the effects of decorin on collagen degradation, we analyzed phagocytosis of collagen and collagen/decorin-coated fluorescent beads by Rat-2 and gingival fibroblasts. Collagen beads bound to gingival cells by alpha2beta1 integrins. Binding and internalization of decorin/collagen-coated beads decreased dose-dependently with increasing decorin concentration (p < 0.001). Inhibition of binding was sustained over 5 h (p < 0.001) and was attributed to interactions between decorin and collagen and not to decorin-collagen receptor interactions. Both the non-glycosylated decorin core protein and the thermally denatured decorin significantly inhibited collagen bead binding (approximately 50 and 89%, respectively; p < 0.05). Mimetic peptides corresponding to leucine-rich repeats 1-3, encompassed by a collagen-binding approximately 11-kDa cyanogen bromide fragment of decorin and leucine-rich repeats 4 and 5, previously shown to bind to collagen, were tested for their ability to inhibit collagen bead binding. Although the synthetic peptide 3 alone exhibited saturable binding to collagen, neither peptides 3 nor 1 and 2 markedly inhibited phagocytosis. Leucine-rich repeat 3 bound to a triple helical peptide containing the alpha2 integrin-binding site of collagen. When collagen beads were co-incubated with peptides 3 and 4, inhibition of collagen phagocytosis (55%) was equivalent to intact native/recombinant core protein. Thus a novel collagen binding domain in decorin acts cooperatively with leucine-rich repeat 4 to mask the alpha2beta1 integrin-binding site on collagen, an important sequence for the phagocytosis of collagen fibrils.  相似文献   

19.
Lysyl oxidases (LOXs) are a family of copper-dependent oxido-deaminases that can modify the side chain of lysyl residues in collagen and elastin, thereby leading to the spontaneous formation of non-reducible aldehyde-derived interpolypeptide chain cross-links. The consequences of LOX inhibition in producing lathyrism are well documented, but the consequences on collagen fibril formation are less clear. Here we used β-aminoproprionitrile (BAPN) to inhibit LOX in tendon-like constructs (prepared from human tenocytes), which are an experimental model of cell-mediated collagen fibril formation. The improvement in structure and strength seen with time in control constructs was absent in constructs treated with BAPN. As expected, BAPN inhibited the formation of aldimine-derived cross-links in collagen, and the constructs were mechanically weak. However, an unexpected finding was that BAPN treatment led to structurally abnormal collagen fibrils with irregular profiles and widely dispersed diameters. Of special interest, the abnormal fibril profiles resembled those seen in some Ehlers-Danlos Syndrome phenotypes. Importantly, the total collagen content developed normally, and there was no difference in COL1A1 gene expression. Collagen type V, decorin, fibromodulin, and tenascin-X proteins were unaffected by the cross-link inhibition, suggesting that LOX regulates fibrillogenesis independently of these molecules. Collectively, the data show the importance of LOX for the mechanical development of early collagenous tissues and that LOX is essential for correct collagen fibril shape formation.  相似文献   

20.
The small dermatan sulfate proteoglycan decorin is involved in the regulation of collagen fibrillogenesis, cell adhesion and migration, and growth factor signaling. In a progeroid patient carrying two point mutations in ß4galactosyltransferase I (ß4galT-7) only 50% of the decorin core protein molecules are substituted with glycosaminoglycan chains. We expressed decorin, as well as wild-type and mutant alleles of ß4galT-7 in galactosyltransferase-deficient CHO618 cells. Decorin was less efficiently substituted with glycosaminoglycan chains upon expression of ß4galT-7186D compared to ß4galT-7-expressing cells. Decorin from ß4galT-7-expressing cells displayed increased molecular heterogeneity. Decorin glycosaminoglycan chains were completely susceptible to chondroitinase ABC treatment. Cells expressing ß4galT-7206P did not synthesize the proteoglycan form of decorin. Thus, the ß4galT-7 mutations directly affect the molecular phenotype of decorin observed in a patient with the progeroid form of Ehlers-Danlos syndrome, which may be a major mechanistic cause for the skin and wound healing defects observed in this patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号