首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The literature on 506 selected chemicals has been evaluated for evidence that these chemicals induce tumors in experimental animals and this assessment comprises the Gene-Tox Carcinogen Data Base. Three major sources of information were used to create this evaluated data base: all 185 chemicals determined by the International Agency for Research on Cancer to have Sufficient evidence of carcinogenic activity in experimental animals, 28 selected chemicals bioassayed for carcinogenic activity by the National Toxicology Program/National Cancer Institute and found to induce tumors in mice and rats, and 293 selected chemicals which had been evaluated in genetic toxicology and related bioassays as determined from previous Gene-Tox reports. The literature data on the 239 chemicals were analyzed by the Gene-Tox Carcinogenesis Panel in an organized, rational and consistent manner. Criteria were established to assess individual studies employing single chemicals and 4 categories of response were developed: Positive, Negative, Inconclusive (Equivocal) and Inconclusive. After evaluating each of the individual studies on the 293 chemicals, the Panel placed each of the 506 chemicals in an overall classification category based on the strength of the evidence indicating the presence or absence of carcinogenic effects. An 8-category decision scheme was established using a modified version of the International Agency for Research on Cancer approach. This scheme included two categories of Positive (Sufficient and Limited), two categories of Negative (Sufficient and Limited), a category of Equivocal (the evidence of carcinogenicity from well-conducted and well-reported lifetime studies had uncertain significance and was neither clearly positive nor negative), and three categories of Inadequate (the evidence of carcinogenicity was insufficient to make a decision, however, the data suggested a positive or negative indication). Of the 506 chemicals in the Gene-Tox Carcinogen Data Base, 252 were evaluated as Sufficient Positive, 99 as Limited Positive, 40 as Sufficient Negative, 21 as Limited Negative, 1 as Equivocal, 13 as Inadequate with the data suggesting a positive indication, 32 as Inadequate with the data suggesting a negative indication, and 48 Inadequate with the data not suggesting any indication of activity.This data base was analyzed and examined according to chemical class, using a 29 chemical class scheme. The major chemical classes represented were: acyl, alkyl and aryl halides (38 chemicals); alcohols and phenols (28 chemicals); alkyl and aryl epoxides (20 chemicals); amines, amides and sulfonamides (70 chemicals); aromatic azo, azide, azoxy, diazo, hydrazo and nitrile chemicals (28 chemicals); aziridines, nitrogen and sulfur mustards (25 chemicals); carbamates, dicarboximides, thioureas and ureas (21 chemicals); metals and organometallics (41 chemicals); nitroalkanes, nitroaromatics, nitrofurans, nitroimidazoles and nitroquinolines (23 chemicals); nitrosamines (19 chemicals); and polycyclic aromatic hydrocarbons and dihydrodiol derivatives (57 chemicals). The Gene-Tox Carcinogen Data Base provides a basis for future in-depth analyses of genetic toxicology bioassay systems with regard to their ability to predict the carcinogenic effects of chemicals.  相似文献   

2.
The literature on 506 selected chemicals has been evaluated for evidence that these chemicals induce tumors in experimental animals and this assessment comprises the Gene-Tox Carcinogen Data Base. Three major sources of information were used to create this evaluated data base: all 185 chemicals determined by the International Agency for Research on Cancer to have Sufficient evidence of carcinogenic activity in experimental animals, 28 selected chemicals bioassayed for carcinogenic activity by the National Toxicology Program/National Cancer Institute and found to induce tumors in mice and rats, and 293 selected chemicals which had been evaluated in genetic toxicology and related bioassays as determined from previous Gene-Tox reports. The literature data on the 239 chemicals were analyzed by the Gene-Tox Carcinogenesis Panel in an organized, rational and consistent manner. Criteria were established to assess individual studies employing single chemicals and 4 categories of response were developed: Positive, Negative, Inconclusive (Equivocal) and Inconclusive. After evaluating each of the individual studies on the 293 chemicals, the Panel placed each of the 506 chemicals in an overall classification category based on the strength of the evidence indicating the presence or absence of carcinogenic effects. An 8-category decision scheme was established using a modified version of the International Agency for Research on Cancer approach. This scheme included two categories of Positive (Sufficient and Limited), two categories of Negative (Sufficient and Limited), a category of Equivocal (the evidence of carcinogenicity from well-conducted and well-reported lifetime studies had uncertain significance and was neither clearly positive nor negative), and three categories of Inadequate (the evidence of carcinogenicity was insufficient to make a decision, however, the data suggested a positive or negative indication). Of the 506 chemicals in the Gene-Tox Carcinogen Data Base, 252 were evaluated as Sufficient Positive, 99 as Limited Positive, 40 as Sufficient Negative, 21 as Limited Negative, 1 as Equivocal, 13 as Inadequate with the data suggesting a positive indication, 32 as Inadequate with the data suggesting a negative indication, and 48 Inadequate with the data not suggesting any indication of activity. This data base was analyzed and examined according to chemical class, using a 29 chemical class scheme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The genetic toxicology of Gene-Tox non-carcinogens   总被引:1,自引:0,他引:1  
The Gene-Tox Program has identified 61 chemicals that have been tested in chronic rodent carcinogenesis bioassays and found to be inactive. The genetic toxicology data of these 61 non-carcinogens is reviewed and summarized. A large proportion of these chemicals have been tested to a limited extent in genetic toxicity bioassays: 32 in 2 tests or less. Of the remaining 29 chemicals, 28% have been tested in 9 or more tests which encompass a range of genetic endpoints: gene mutation, chromosomal effects, other genetic endpoints, and cell transformation. The genetic toxicity of 12 chemicals with sufficient data is discussed in detail: benzoin, caffeine caprolactam, ethanol, halothane, hycanthone methanesulfonate, malathion, maleic hydrazide, methotrexate, 1-naphthylamine, 4-nitro-o-phenylenediamine, and p-phenylenediamine. A new technique for the evaluation of multiple test data, the "genetic activity profile", has been applied to 6 of these chemicals, allowing the qualitative and quantitative information to be compared collectively. In the evaluation of the genotoxicity effects of these non-carcinogens, a number of discrepancies between the results from genetic toxicity bioassays and chronic rodent bioassays have been uncovered. These discrepancies are discussed in light of current knowledge on the strengths and weaknesses of both genetic toxicity bioassays and chronic rodent bioassays.  相似文献   

4.
5.
J A Heddle 《Mutation research》1991,247(2):221-229
The activation of oncogenes and our knowledge of the chromosome breakage syndromes show that both intragenic mutations and chromosomal aberrations are important in carcinogenesis. Each suggests that an agent could produce genetic changes in a tissue without producing cancer there, if the types of genetic change do not match: chromosomal aberrations may be irrelevant in the mammary epithelium but be very significant in the bone marrow, and vice versa. This has vital implications for genetic toxicology: (1) both gene mutations and chromosomal aberrations should be measured, and (2) carcinogens may be mutagenic in tissues in which they are not carcinogenic. One might therefore expect in vivo assays for mutagenicity to correlate rather well with cancer bioassays; unfortunately, the bioassays themselves seem faulty. If cancer bioassays are valid, they would be reproducible. If bioassays are reproducible, they would be internally consistent. The information supplied by Tennant et al. (1987) for their validation of in vitro assays gives data from both sexes in rats and mice for 70 chemicals. When the data are analyzed site-by-site, positive results were not replicated in the other sex or in the other species much of the time: in half the cases the other sex does not give the same result; in two-thirds of the cases the other species does not give the same result. There are 3 potential explanations for these differing results: (1) genuine sex-specific carcinogens are common, (2) genuine species-specific carcinogens are common, or (3) the bioassay does not replicate well, i.e., is erratic. The third possibility best explains the data. The apparent inability of short-term in vitro tests to discriminate well between carcinogens and non-carcinogens may be more a reflection of the cancer bioassays that were used to determine which chemicals were carcinogenic than any defect in the assays. In this situation in vivo assays can scarcely be expected to do better even if they are better.  相似文献   

6.
D Brusick 《Mutation research》1988,205(1-4):69-78
Shortly following the inception of genetic toxicology as a distinct discipline within toxicology, questions arose regarding the type and number of tests needed to classify a chemical as a mutagenic hazard or as a potential carcinogen. To some degree the discipline separated into two sub-specialties, (1) genetic risk assessment and (2) cancer prediction since data from experimental oncology also supports the existence of a genotoxic step in tumor initiation. The issue of which and how many tests continued to be debated, but is now focused more tightly around two independent phenomena. Tier or sequential testing was initially proposed as a logical and cost-effective method, but was discarded on the basis that the lower tier tests appeared to have too many false responses to force or exclude further testing of the test agent. Matrix (battery) testing was proposed for screening on the hypothesis that combinations of endpoints and multiple phylogenetic target organisms were needed to achieve satisfactory predictability. As the results from short-term test 'validation' studies for carcinogen prediction and evaluations of EPA's Gene-Tox data accumulated, it became obvious that qualitative differences remained between predictive and definitive tests and by assembling different combinations of short-term assays investigators did not appear to resolve the lack of concordance. Recent trends in genetic toxicology testing have focused on mathematical models for test selection, and standardized systems for multi-test data assessment.  相似文献   

7.
The CASE structure-activity methodology has been applied to a Gene-Tox derived Salmonella mutagenicity data base consisting of 808 chemicals. Based upon qualitative structural features, CASE identified 29 activating and 3 inactivating structural determinants which correctly predicted the probability of carcinogenicity of 93.7% of the known mutagens and non-mutagens in the data base (sensitivity = 0.998, and specificity = 0.704). Additionally, based upon a qualitative structure-activity analysis, CASE's performance was even better, leading to a sensitivity of 0.981 and a specificity of 1.000. Using the structural determinants identified in this data base, CASE gave excellent predictions of the mutagenicity of chemicals not included in the data base. The identified biophores and biophobes can also be used to investigate the structural basis of the mutagenicity of various chemical classes.  相似文献   

8.
For the vast majority of chemicals, mammalian germ-line (MG) mutation data do not exist. The question was examined of how best to utilize results of non-MG genotoxicity assays that are included in the Gene-Tox data base to provide information of the likelihood that genetic damage might be induced in and transmitted by the reproductive cells of exposed human beings. Two approaches were used to assess the relative value of different assays for genetic hazard identification. (1) Test results were weighted according to parameters by which conditions of an assay resemble those encountered in the potential induction of transmitted genetic damage in mammals. For this purpose, 35 assays were grouped into 16 categories that were assigned weights ranging from 1 to 15; there were 2367 chemicals in the data base. This system was evaluated by comparing the sum of weighted test results for each chemical with the outcome of MG-standard (MGst) tests where such had been reported. (MGst tests used were the specific-locus and heritable-translocation assays [SLT and HTT] for gene mutations and chromosome aberrations, respectively.) The weighting system produced a few false positives with respect to the MGst results. It produced no false negatives, but the available evidence is limited by the circumstance that MGst test have evidently been preferentially performed with chemicals that had already been shown to be positive in several other assays. (2) Findings from each MGst test were compared with those from each of the other assays in turn, provided that at least 10 chemicals had been tested in both of the assays. There were 11 such comparisons involving the SLT, and 14 such comparisons involving the HTT. The observed concordance was above random expectation in several comparisons, particularly those involving certain mammalian in vivo tests, but in only one case (HTT vs. unscheduled DNA synthesis in the testis) did the degree of elevation approach statistical significance.  相似文献   

9.
For a number of years, investigators have recognized that humans potentially are exposed to large numbers of genotoxicants. Many efforts have attempted to validate various short-term bioassays for use as rapid, inexpensive screens for genotoxicants--especially carcinogens. In this analysis, we examine Salmonella mutagenicity as an indicator of potential carcinogenicity by comparing published (and when possible, evaluated) Salmonella results with the evaluated Gene-Tox animal carcinogen data base. The Salmonella bioassay does especially well in those cases where the level of evidence for carcinogenicity is the strongest. Analysis shows that except for specific classes of compounds, the plate-incorporation protocol and the preincubation protocol are equally efficient at detecting mutagens. This paper also demonstrates how validation values (sensitivity, specificity, etc.) vary with chemical class. Overall, this analysis demonstrates that when used and interpreted in a meaningful chemical class context, the Salmonella bioassay remains extremely useful in identifying potential animal carcinogens.  相似文献   

10.
A portion of the U.S. National Toxicology Program (NTP) Salmonella typhimurium mutagenicity data base was analyzed by CASE, an artificial intelligence SAR system. CASE identified 13 structural determinants which, with a high probability (p less than or equal to 0.05) predicted the likelihood of mutagenicity of the 243 chemicals in the data base (sensitivity = 0.989; specificity = 0.950) as well as of chemicals not included in the data base. CASE also identified an additional set of structures which were highly predictive of mutagenic potency (sensitivity = 0.949; specificity = 1.00). Even though there is little overlap among the chemicals included in the NTP and Gene-Tox Salmonella data bases, CASE found significant similarities between the structural determinants of the mutagenicity in the two data bases, thereby validating the analyses and indicating a commonality in the structural basis of mutagenicity.  相似文献   

11.
A method for classifying chemicals with respect to carcinogenic potential based on short-term test results is presented. The method utilizes the logistic regression model to translate results from short-term toxicity assays into predictions of the likelihood that a chemical will be carcinogenic if tested in a long-term bioassay. The proposed method differs from previous approaches in two ways. First, statistical confidence limits on probabilities of cancer rather than central estimates of those probabilities are used for classification. Second, the method does not classify all chemicals in a data base with respect to carcinogenic potential. Instead, it identifies chemicals with highest and lowest likelihood of testing positive for carcinogenicity in the bioassay. A subset of chemicals with intermediate likelihood of being positive remains unclassified, and will require further testing, perhaps in a long-term bioassay. Two data bases of binary short-term and long-term test results from the literature are used to illustrate and evaluate the proposed procedure. A cross-validation analysis of one of the data sets suggests that, for a sufficiently rich data base of chemicals, the development of a robust predictive system to replace the bioassay for some unknown chemicals is a realistic goal.  相似文献   

12.
This report examines a group of putative nongenotoxic carcinogens that have been cited in the published literature. Using short-term test data from the U.S. Environmental Protection Agency/International Agency for Research on Cancer genetic activity profile (EPA/IARC GAP) database we have classified these agents on the basis of their mutagenicity emphasizing three genetic endpoints: gene mutation, chromosomal aberration and aneuploidy. On the basis of results of short-term tests for these effects, we have defined criteria for evidence of mutagenicity (and nonmutagenicity) and have applied these criteria in classifying the group of putative nongenotoxic carcinogens. The results from this evaluation based on the EPA/IARC GAP database are presented along with a summary of the short-term test data for each chemical and the relevant carcinogenicity results from the NTP, Gene-Tox and IARC databases. The data clearly demonstrate that many of the putative nongenotoxic carcinogens that have been adequately tested in short-term bioassays induce gene or chromosomal mutations or aneuploidy.  相似文献   

13.
D Clive 《Mutation research》1988,205(1-4):313-330
The present analysis examines the assumptions in, the perceptions and predictivity of and the need for short-term tests (STTs) for genotoxicity in light of recent findings that most noncarcinogens from the National Toxicology Program are genotoxic (i.e., positive in one or more in vitro STTs). Reasonable assumptions about the prevalence for carcinogens (1-10% of all chemicals), the sensitivity of these STTs (ca. 90% of all carcinogens are genotoxic) and their estimated "false positive" incidence (60-75%) imply that the majority of chemicals elicit genotoxic responses and, consequently, that most in vitro genotoxins are likely to be noncarcinogenic. Thus, either the usual treatment conditions used in these in vitro STTS are producing a large proportion of artifactual and meaningless positive results or else in vitro mutagenicity is too common a property of chemicals to serve as a useful predictor of carcinogenicity or other human risk. In contrast, the limited data base on in vivo STTs suggests that the current versions of these assays may have low sensitivity which appears unlikely to improve without dropping either their 'short-term' aspect or the rodent carcinogenicity benchmark. It is suggested that in vivo genotoxicity protocols be modified to take into consideration both the fundamentals of toxicology as well as the lessons learned from in vitro genetic toxicology. In the meantime, while in vivo assays are undergoing rigorous validation, genetic toxicology, as currently practiced, should not be a formal aspect of chemical or drug development on the grounds that it is incapable of providing realistic and reliable information on human risk. It is urged that data generated in new, unvalidated in vivo genotoxicity assays be exempted from the normal regulatory reporting requirements in order to encourage industry to participate in the laborious and expensive development of this next phase of genetic toxicology.  相似文献   

14.
Cluster analysis can be a useful tool for exploratory data analysis to uncover natural groupings in data, and initiate new ideas and hypotheses about such groupings. When applied to short-term assay results, it provides and improves estimates for the sensitivity and specificity of assays, provides indications of association between assays and, in turn, which assays can be substituted for one another in a battery, and allows a data base containing test results on chemicals of unknown carcinogenicity to be linked to a data base for which animal carcinogenicity data are available. Cluster analysis was applied to the Gene-Tox data base (which contains short-term test results on chemicals of both known and unknown carcinogenicity). The results on chemicals of known carcinogenicity were different from those obtained when the entire data base was analyzed. This suggests that the associations (and possibly the sensitivities and specificities) which are based on chemicals of known carcinogenicity may not be representative of the true measures. Cluster analysis applied to the total data base should be useful in improving these estimates. Many of the associations between the assays which were found through the use of cluster analysis could be 'validated' based on previous knowledge of the mechanistic basis of the various tests, but some of the associations were unsuspected. These associations may be a reflection of a non-ideal data base. As additional data becomes available and new clustering techniques for handling non-ideal data bases are developed, results from such analyses could play an increasing role in strengthening prediction schemes which utilize short-term tests results to screen chemicals for carcinogenicity, such as the carcinogenicity and battery selection (CPBS) method (Chankong et al., 1985).  相似文献   

15.
With a view to developing methodologies for predicting the carcinogenicity of chemicals on the basis of the results of short-term assays and selecting highly predictive batteries of short-term tests, a data base was assembled. The present is a compilation of data extracted from the reports of Gene-Tox working groups, Salmonella mutagenicity data obtained from the U.S. National Toxicology Program and the Environmental Mutagen Information Center and results from BHK21 transformation assays.  相似文献   

16.
The tumorigenesis profiles of 116 chemicals, which proved to induce cancer in the NCI/NTP experimentation, were studied by multivariate data analysis methods. Three main patterns of tumor induction were evident. One chemical (benzene) was not classifiable in any of the 3 clusters of chemicals. The carcinogen classes based on patterns of tumor induction did not reflect a repartition between Ames-positive and Ames-negative chemicals. Therefore any classification of carcinogens as either 'primary' (genotoxic, hence assumed to pose a greater risk) or 'secondary' (presumably carcinogenic via non-genotoxic mechanisms) would seem to be a subject for research and speculation, and, for the present, an unsuitable basis for risk assessment.  相似文献   

17.
Cancer in children is a major concern in many countries. An important question is whether these childhood cancers are caused by something, or are just tragic random events. Causation of at least some children's cancers is suggested by direct and indirect evidence, including epidemiological data, and animal studies that predict early life sensitivity of humans to carcinogenic effects. Candidate risk factors include genotoxic agents (chemicals and radiation), but also diet/nutrition, and infectious agents/immune responses. With regard to likelihood of risks posed by genotoxicants, there are pros and cons. The biological properties of fetuses and infants are consistent with sensitivity to preneoplastic genotoxic damage. Recent studies of genetic polymorphisms in carcinogen-metabolizing enzymes confirm a role for chemicals. On the other hand, in numerous epidemiological studies, associations between childhood cancers and exposure to genotoxicants, including tobacco smoke, have been weak and hard to reproduce. Possibly, sensitive genetic or ontogenetic subpopulations, and/or co-exposure situations need to be discovered to allow identification of susceptible individuals and their risk factors. Among the critical knowledge gaps needing to be bridged to aid in this effort include detailed tissue and cellular ontogeny of carcinogen metabolism and DNA repair enzymes, and associations of polymorphisms in DNA repair enzymes with childhood cancers. Perinatal bioassays in animals of specific environmental candidates, for example, benzene, could help guide epidemiology. Genetically engineered animal models could be useful for identification of chemical effects on specific genes. Investigations of interactions between factors may be key to understanding risk. Finally, fathers and newborn infants should receive more attention as especially sensitive targets.  相似文献   

18.
Computer-generated genetic activity profiles and pairwise matching procedures may aid in the selection of the most appropriate short-term bioassays to be used in test batteries for the evaluation of the genotoxicity of a given chemical or group of chemicals. Selection of test batteries would be based on a quantitative comparative assessment of the past performance of similar tests applied to other chemicals of the same structural group. The information potentially available for test-battery selection through the use of this pattern-recognition technique is considerably greater than the qualitative results obtained from individual short-term tests. Application of the method should further our understanding of the relationships between chemical properties and genotoxic responses obtained in short-term bioassays and also may contribute to our knowledge of the mechanisms of complex processes such as carcinogenesis. This approach to battery selection should be augmented by careful consideration of established principles of genetic toxicity testing; that is, a chemical should be evaluated in a battery of tests representing the full range of relevant genetic endpoints.  相似文献   

19.
The National Toxicology Program (NTP) was established in 1978 with the broad goal of strengthening the science base of chemical toxicity, thus providing better information to regulatory and research agencies. Since that time the NTP has conducted in-depth toxicity/carcinogenesis studies on over 200 chemicals of importance to industry, the public at large and the general environment; clearly the largest such database in the world. This database is unique in that it represents an objective fairly standard accumulation of peer-reviewed information on a myriad of chemicals composed of various chemical classes, non-carcinogens as well as carcinogens. The results of these studies are reported as "no evidence, equivocal evidence, some evidence or clear evidence of carcinogenic activity" in a single sex/species. There is also an "inadequate" category for studies that have major limitations. Although noted, no attempt is made to give added weight to chemicals which cause neoplasms at multiple sites, at rare versus common sites, in both species/sexes, which occur early in the study, at low as well as high doses, or those observed in the presence or absence of toxicity (necrosis, degeneration, etc.) in the same organ. Such observational data may serve as "markers" or "alerts" for whether a chemical's in vivo carcinogenic activity is the result of mutagenic or non-mutagenic activity.  相似文献   

20.
Due to limited human exposure data, risk classification and the consequent regulation of exposure to potential carcinogens has conventionally relied mainly upon animal tests. However, several investigations have revealed animal carcinogenicity data to be lacking in human predictivity. To investigate the reasons for this, we surveyed 160 chemicals possessing animal but not human exposure data within the US Environmental Protection Agency chemicals database, but which had received human carcinogenicity assessments by 1 January 2004. We discovered the use of a wide variety of species, with rodents predominating, and of a wide variety of routes of administration, and that there were effects on a particularly wide variety of organ systems. The likely causes of the poor human predictivity of rodent carcinogenicity bioassays include: 1) the profound discordance of bioassay results between rodent species, strains and genders, and further, between rodents and human beings; 2) the variable, yet substantial, stresses caused by handling and restraint, and the stressful routes of administration common to carcinogenicity bioassays, and their effects on hormonal regulation, immune status and predisposition to carcinogenesis; 3) differences in rates of absorption and transport mechanisms between test routes of administration and other important human routes of exposure; 4) the considerable variability of organ systems in response to carcinogenic insults, both between and within species; and 5) the predisposition of chronic high dose bioassays toward false positive results, due to the overwhelming of physiological defences, and the unnatural elevation of cell division rates during ad libitum feeding studies. Such factors render profoundly difficult any attempts to accurately extrapolate human carcinogenic hazards from animal data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号