首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lac591, a gene encoding a novel multicopper oxidase with laccase activity, was identified through activity-based functional screening of a metagenomic library from mangrove soil. Sequence analysis revealed that lac591 encodes a protein of 500 amino acids with a predicted molecular mass of 57.4 kDa. Lac591 was overexpressed heterologously as soluble active enzyme in Escherichia coli and purified, giving rise to 380 mg of purified enzyme from 1 l induced culture, which is the highest expression report for bacterial laccase genes so far. Furthermore, the recombinant enzyme demonstrated activity toward classical laccase substrates syringaldazine (SGZ), guaiacol, and 2, 6-dimethoxyphenol (2, 6-DMP). The purified Lac591 exhibited maximal activity at 55°C and pH 7.5 with guaiacol as substrate and was found to be stable in the pH range of 7.0–10.0. The substrate specificity on different substrates was studied with the purified enzyme, and the optimal substrates were in the order of 2, 6-DMP > catechol > α-naphthol > guaiacol > SGZ > 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). The alkaline activity and highly soluble expression of Lac591 make it a good candidate of laccases in industrial applications for which classical laccases are unsuitable, such as biobleaching of paper pulp and dyestuffs processing.  相似文献   

2.
The thermoalkalophilic Bacillus halodurans JB 99 cells known for production of novel thermostable alkaline keratinolytic protease were immobilized in calcium alginate matrix. Batch and repeated batch cultivation using calcium alginate immobilized cells were studied for alkaline protease production in submerged fermentation. Immobilized cells with 2.5% alginate and 350 beads/flask of initial cell loading showed enhanced production of alkaline protease by 23.2% (5,275 ± 39.4 U/ml) as compared to free cells (4,280 ± 35.4 U/ml) after 24 h. In the semicontinuous mode of cultivation, immobilized cells under optimized conditions produced an appreciable level of alkaline protease in up to nine cycles and reached a maximal value of 5,975 U/ml after the seventh cycle. The enzyme produced from immobilized cells efficiently degraded chicken feathers in the presence of a reducing agent which can help the poultry industry in the management of keratin-rich waste and obtaining value-added products.  相似文献   

3.
A phylogenetic analysis of more than 350 multicopper oxidases (MCOs) from fungi, insects, plants, and bacteria provided the basis for a refined classification of this enzyme family into laccases sensu stricto (basidiomycetous and ascomycetous), insect laccases, fungal pigment MCOs, fungal ferroxidases, ascorbate oxidases, plant laccase-like MCOs, and bilirubin oxidases. Within the largest group of enzymes, formed by the 125 basidiomycetous laccases, the gene phylogeny does not strictly follow the species phylogeny. The enzymes seem to group at least partially according to the lifestyle of the corresponding species. Analyses of the completely sequenced fungal genomes showed that the composition of MCOs in the different species can be very variable. Some species seem to encode only ferroxidases, whereas others have proteins which are distributed over up to four different functional clusters in the phylogenetic tree.  相似文献   

4.
2,6-Dimethoxyphenol is a versatile substrate for Pyricularia oryzae laccase, PpoA from Marinomonas mediterranea, phenoxazinone synthase from Streptomyces antibioticus and mammalian ceruloplasmin. In addition, in cellular extracts of microorganisms expressing other blue multicopper proteins with no enzymatic activity previously described, such as Escherichia coli (copper resistance CueO), Pseudomonas syringae and Xanthomonas campestris (copper resistance CopA), Bacillus subtilis (sporulation protein CotA) and Saccharomyces cerevisiae (iron transporter Fet3p), laccase activity is detected under appropriate conditions. This oxidase activity can be spectrophotometrically followed by the oxidation of 2,6-dimethoxyphenol. Specific staining after SDS-PAGE is also possible for some of these proteins. This detection assay can facilitate the study of the multiple functions that such proteins seem to carry out in a variety of microorganisms.  相似文献   

5.
Ferroxidase activity was detected in a laccase-like multicopper oxidase (LMCO) produced in transgenic tobacco cells expressing an LMCO cDNA (Ltlacc2.2) cloned from yellow-poplar (Liriodendron tulipifera). This marks the first report of ferroxidase activity associated with a plant laccase and suggests that some members of this plant enzyme family may have physiological functions based on activities other than their more widely recognized phenoloxidase activity. Recent work with LMCOs from bacteria, yeast and mammals has shown that metal oxidase activities in these enzymes can be important for their primary physiological functions, With respect to ferroxidase activity in certain plant LMCOs, it is proposed that the high levels of LMCO expression in plant vascular tissues may reflect the need for high-efficiency iron uptake pumps in tissues that undergo lignification during normal development. Such iron uptake pumps would function to minimize levels of free iron so that reactive oxygen species do not reach toxic levels when H2O2 is generated for peroxidase-mediated monolignol coupling during lignin deposition.  相似文献   

6.
A newly isolated strain, 38C-2-1, produced alkaline and thermotolerant alpha-amylases and was identified as Bacillus halodurans. The enzymes were purified to homogeneity and named alpha-amylase I and II. These showed molecular masses of 105 and 75 kDa respectively and showed maximal activities at 50-60 degrees C and pH 10-11, and 42 and 38% relative activities at 30 degrees C. These results indicate that the enzymes are thermotolerant. The enzyme activity was not inhibited by a surfactant or a bleaching reagent used in detergents. A gene encoding alpha-amylase I was cloned and named amyI. Production of AmyI with a signal peptide repressed the growth of an Escherichia coli transformant. When enzyme production was induced by the addition of isopropyl beta-D(-)-thiogalactopyranoside in the late exponential growth phase, the highest enzyme yield was observed. It was 45-fold that of the parent strain 38C-2-1.  相似文献   

7.
A novel endo-beta-1,3(4)-D-glucanase gene was found in the complete genome sequence of Bacillus halodurans C-125. The gene was previously annotated as an "unknown" protein and assigned an incorrect open reading frame (ORF). However, determining the biochemical characteristics has elucidated the function and correct ORF of the gene. The gene encodes 231 amino acids, and its calculated molecular mass was estimated to be 26743.16 Da. The amino acid sequence alignment showed that the highest sequence identity was only 28% with that of the beta-1,3-1,4-glucanase from Bacillus subtilis. Moreover, the nucleotide sequence did not match any other known Bacillus beta-glucanase gene. The member of the gene cluster that includes this novel gene was apparently different from that of the gene cluster including the putative beta-glucanase genes (bh3231 and bh3232) from B. halodurans C-125. Therefore, the novel gene is not a copy of either of these genes, and in B. halodurans cells, the putative role of the encoded protein may differ from that of bh3231 and bh3232. To examine the activity of the gene product, the gene was cloned as a His-tagged protein and expressed in Escherichia coli. The purified enzyme showed activity against lichenan, barley beta-glucan, laminarin, and carboxymethyl curdlan. Thin-layer chromatography showed that the enzyme hydrolyzes substrates in an endo-type manner. When beta-glucan was used as a substrate, the pH optimum was between 6 and 8, and the temperature optimum was 60 degrees C. After 2 h incubation at 50 and 60 degrees C, the residual activity remained 100% and 50%, respectively. The enzymatic activity was abolished after 30 min incubation at 70 degrees C. Based on the results, the gene encodes an endo-type beta-1,3(4)-D-glucanase (E.C. 3.2.1.6).  相似文献   

8.
Pedomicrobium sp. ACM 3067 is a budding-hyphal bacterium belonging to the alpha-Proteobacteria which is able to oxidize soluble Mn2+ to insoluble manganese oxide. A cosmid, from a whole-genome library, containing the putative genes responsible for manganese oxidation was identified and a primer-walking approach yielded 4350 bp of novel sequence. Analysis of this sequence showed the presence of a predicted three-gene operon, moxCBA. The moxA gene product showed homology to multicopper oxidases (MCOs) and contained the characteristic four copper-binding motifs (A, B, C and D) common to MCOs. An insertion mutation of moxA showed that this gene was essential for both manganese oxidation and laccase-like activity. The moxB gene product showed homology to a family of outer membrane proteins which are essential for Type I secretion in Gram-negative bacteria. moxBA has not been observed in other manganese-oxidizing bacteria but homologues were identified in the genomes of several bacteria including Sinorhizobium meliloti 1021 and Agrobacterium tumefaciens C58. These results suggest that moxBA and its homologues constitute a family of genes encoding an MCO and a predicted component of the Type I secretion system.  相似文献   

9.
Bilirubin oxidase activity of Bacillus subtilis CotA   总被引:1,自引:0,他引:1  
The spore coat protein CotA from Bacillus subtilis was previously identified as a laccase. We have now found that CotA also shows strong bilirubin oxidase activity and markedly higher affinity for bilirubin than conventional bilirubin oxidase. This is the first characterization of bilirubin oxidase activity in a bacterial protein.  相似文献   

10.
11.
Multicopper oxidases can act on a broad spectrum of phenolic and non‐phenolic compounds. These enzymes include laccases, which are widely distributed in plants and fungi, and were more recently identified in bacteria. Here, we present the results of biochemical and mutational studies of small laccase (SLAC), a multicopper oxidase from Streptomyces coelicolor (SCO6712). In addition to typical laccase substrates, SLAC was tested using phenolic compounds that exhibit antioxidant activity. SLAC showed oxidase activity against 12 of 23 substrates tested, including caffeic acid, ferulic acid, resveratrol, quercetin, morin, kaempferol and myricetin. The kinetic parameters of SLAC were determined for 2,2′‐azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid), 2,6‐dimethoxyphenol, quercetin, morin and myricetin, and maximum reaction rates were observed with myricetin, where kcat and Km values at 60°C were 8.1 (± 0.8) s?1 and 0.9 (± 0.3) mM respectively. SLAC had a broad pH optimum for activity (between pH 4 and 8) and temperature optimum at 60–70°C. It demonstrated remarkable thermostability with a half‐life of over 10 h at 80°C and over 7 h at 90°C. Site‐directed mutagenesis revealed 17 amino acid residues important for SLAC activity including the 10 His residues involved in copper coordination. Most notably, the Y229A and Y230A mutant proteins showed over 10‐fold increase in activity compared with the wild‐type SLAC, which was correlated to higher copper incorporation, while kinetic analyses with S929A predicts localization of this residue near the meta‐position of aromatic substrates.  相似文献   

12.
【背景】微生物溶磷机制多种多样,利用其解磷能力可有效促进植物生长。【目的】探究溶磷菌解淀粉芽孢杆菌YP6的溶磷机制,提高磷资源的利用率。【方法】在大肠杆菌BL21(DE3)中克隆并表达YP6中磷酸酯酶AP3基因,研究AP3的酶学性质并验证AP3的溶磷作用。【结果】AP3为碱性磷酸酯酶,最适反应pH为10.3,最适反应温度为40°C,AP3对pNPP亲和性较高,V_m为4 033.4μmol/(min·mg),K_m为12.2 mmol/L。用纯酶AP3处理24 h后,磷矿粉中的有效磷显著增加。接种菌株YP6发酵7 d后,也使土样中有效磷明显增长。【结论】揭示了碱性磷酸酯酶AP3的溶磷能力,丰富了溶磷微生物库及对微生物溶磷机制的认识。  相似文献   

13.
We have analyzed the distribution of RNA nucleotidyltransferases from the family that includes poly(A) polymerases (PAP) and tRNA nucleotidyltransferases (TNT) in 43 bacterial species. Genes of several bacterial species encode only one member of the nucleotidyltransferase superfamily (NTSF), and if that protein functions as a TNT, those organisms may not contain a poly(A) polymerase I like that of Escherichia coli. The genomes of several of the species examined encode more than one member of the nucleotidyltransferase superfamily. The function of some of those proteins is known, but in most cases no biochemical activity has been assigned to the NTSF. The NTSF protein sequences were used to construct an unrooted phylogenetic tree. To learn more about the function of the NTSFs in species whose genomes encode more than one, we have examined Bacillus halodurans. We have demonstrated that B. halodurans adds poly(A) tails to the 3' ends of RNAs in vivo. We have shown that the genes for both of the NTSFs encoded by the B. halodurans genome are transcribed in vivo. We have cloned, overexpressed, and purified the two NTSFs and have shown that neither functions as poly(A) polymerase in vitro. Rather, the two proteins function as tRNA nucleotidyltransferases, and our data suggest that, like some of the deep branching bacterial species previously studied by others, B. halodurans possesses separate CC- and A-adding tRNA nucleotidyltransferases. These observations raise the interesting question of the identity of the enzyme responsible for RNA polyadenylation in Bacillus.  相似文献   

14.
In this study, we have shown that recombinant BH1999 from Bacillus halodurans catalyzes the hydrolysis of gentisyl coenzyme A (CoA) (2,5-dihydroxybenzoyl-coenzyme A) at physiological pH with a k(cat)/K(m) of 1.6 x 10(6) M(-1) s(-1) and the hydrolysis of 3-hydroxybenzoyl-CoA with a k(cat)/K(m) of 3.0 x 10(5) M(-1) s(-1). All other acyl-CoA thioesters tested had low or no substrate activity. The BH1999 gene is juxtaposed with a gene cluster that contains genes believed to function in gentisate oxidative degradation. It is hypothesized that BH1999 functions as a gentisyl-CoA thioesterase. Gentisyl-CoA thioesterase shares the backbone fold and the use of an active site aspartate residue to mediate catalysis with the 4-hydroxybenzoyl-CoA thioesterase of the hotdog fold enzyme superfamily. A comparative study of these two enzymes showed that they differ greatly in the rate contribution made by the catalytic aspartate, in the pH dependence of catalysis, and in substrate specificity.  相似文献   

15.
Two alkaline keratinases-I and II secreted by Bacillus halodurans PPKS-2 were purified and characterized. Both the keratinases were purified using ammonium sulfate, DEAE-Sephadex followed by Sephadex G-200 column chromatography. The purification was 21.5-fold and 11.17% yield for keratinase-I and 23.7-fold with yield 18.46 for keratinase-II and its molecular weights 30 and 66 kDa. Both purified enzymes were relatively stable over a broad pH range 7.0–13.0 and optimally active at pH 11.0 and 60–70 °C. Keratinase-II was found to be more stable at 70 °C for 3 h and retained 100% of its activity, whereas keratinase-I lost 10% activity. Keratinase-I had high keratin disulfide reductase activity with low keratinase activity whereas keratinase-II had high keratinase activity with low keratin disulfide reductase activity. Keratinase activities of both the enzymes were completely inhibited by PMSF at 1 mM, whereas keratin disulfide reductase activity of keratinase-I was not affected. Enzymes were active and stable in the presence of the surfactants, bleaching agents (20% H2O2), commercial detergents (1%), and SDS (20%). Both the enzymes were partially sequenced and found that keratinase-I and II had a homology with disulfide reductases and serine type of proteases, respectively.  相似文献   

16.
Bacillus anthracis toxins inhibit human neutrophil NADPH oxidase activity   总被引:4,自引:0,他引:4  
Bacillus anthracis, the causative agent of anthrax, is a Gram-positive, spore-forming bacterium. B. anthracis virulence is ascribed mainly to a secreted tripartite AB-type toxin composed of three proteins designated protective Ag (PA), lethal factor, and edema factor. PA assembles with the enzymatic portions of the toxin, the metalloprotease lethal factor, and/or the adenylate cyclase edema factor, to generate lethal toxin (LTx) and edema toxin (ETx), respectively. These toxins enter cells through the interaction of PA with specific cell surface receptors. The anthrax toxins act to suppress innate immune responses and, given the importance of human neutrophils in innate immunity, they are likely relevant targets of the anthrax toxin. We have investigated in detail the effects of B. anthracis toxin on superoxide production by primary human neutrophils. Both LTx and ETx exhibit distinct inhibitory effects on fMLP (and C5a) receptor-mediated superoxide production, but have no effect on PMA nonreceptor-dependent superoxide production. These inhibitory effects cannot be accounted for by induction of neutrophil death, or by changes in stimulatory receptor levels. Analysis of NADPH oxidase regulation using whole cell and cell-free systems suggests that the toxins do not exert direct effects on NADPH oxidase components, but rather act via their respective effects, inhibition of MAPK signaling (LTx), and elevation of intracellular cAMP (ETx), to inhibit upstream signaling components mediating NADPH oxidase assembly and/or activation. Our results demonstrate that anthrax toxins effectively suppress human neutrophil-mediated innate immunity by inhibiting their ability to generate superoxide for bacterial killing.  相似文献   

17.
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. We previously identified and purified an alternative oxidase, cytochrome bd-type quinol oxidase, from a mutant of Bacillus stearothermophilus defective in the caa3-type oxidase activity (J. Sakamoto et al., FEMS Microbiol. Lett. 143 (1996) 151-158). Compared with proteobacterial counterparts, B. stearothermophilus cytochrome bd showed lower molecular weights of the two subunits, shorter wavelength of alpha-band absorption maximum due to heme D, and lower quinol oxidase activity. Preincubation with menaquinone-2 enhanced the enzyme activity up to 40 times, suggesting that, besides the catalytic site, there is another quinone-binding site which largely affects the enzyme activity. In order to clarify the molecular basis of the differences of cytochromes bd between B. stearothermophilus and proteobacteria, the genes encoding for the B. stearothermophilus bd was cloned based on its partial peptide sequences. The gene for subunit I (cbdA) encodes 448 amino acid residues with a molecular weight of 50195 Da, which is 14 and 17% shorter than those of Escherichia coli and Azotobacter vinelandii, respectively, and CbdA lacks the C-terminal half of the long hydrophilic loop between the putative transmembrane segments V and VI (Q loop), which has been suggested to include the substrate quinone-binding site for the E. coli enzyme. The gene for subunit II (cbdB) encodes 342 residues with a molecular weight of 38992 Da. Homology search indicated that the B. stearothermophilus cbdAB has the highest sequence similarity to ythAB in B. subtilis genome rather than to cydAB, the first set of cytochrome bd genes identified in the genome. Sequence comparison of cytochromes bd and their homologs from various organisms demonstrates that the proteins can be classified into two subfamilies, a proteobacterial type including E. coli bd and a more widely distributed type including the B. stearothermophilus enzyme, suggesting that the latter type is evolutionarily older.  相似文献   

18.
Laccases are blue multicopper oxidases with potential applications in environmental and industrial biotechnology. In this study, a new bacterial laccase gene of 1.32 kb was obtained from a marine microbial metagenome of the South China Sea by using a sequence screening strategy. The protein (named as Lac15) of 439 amino acids encoded by the gene contains three conserved Cu2+-binding domains, but shares less than 40% of sequence identities with all of the bacterial multicopper oxidases characterized. Lac15, recombinantly expressed in Escherichia coli, showed high activity towards syringaldazine at pH 6.5–9.0 with an optimum pH of 7.5 and with the highest activity occurring at 45 °C. Lac15 was stable at pH ranging from 5.5 to 9.0 and at temperatures from 15 to 45 °C. Distinguished from fungal laccases, the activity of Lac15 was enhanced twofold by chloride at concentrations lower than 700 mM, and kept the original level even at 1,000 mM chloride. Furthermore, Lac15 showed an ability to decolorize several industrial dyes of reactive azo class under alkalescent conditions. The properties of alkalescence-dependent activity, high chloride tolerance, and dye decolorization ability make the new laccase Lac15 an alternative for specific industrial applications.  相似文献   

19.
Dormant spores of the marine Bacillus sp. strain SG-1 catalyze the oxidation of manganese(II), thereby becoming encrusted with insoluble Mn(III,IV) oxides. In this study, it was found that the Mn(II)-oxidizing activity could be removed from SG-1 spores using a French press and recovered in the supernatant following centrifugation of the spores. Transmission electron microscopy of thin sections of SG-1 spores revealed that the ridged outermost layer was removed by passage through the French press, leaving the remainder of the spore intact. Comparative chemical analysis of this layer with the underlying spore coats suggested that this outer layer is chemically distinct from the spore coat. Taken together, these results indicate that this outer layer is an exosporium. Previous genetic analysis of strain SG-1 identified a cluster of genes involved in Mn(II) oxidation, the mnx genes. The product of the most downstream gene in this cluster, MnxG, appears to be a multicopper oxidase and is essential for Mn(II) oxidation. In this study, MnxG was overexpressed in Escherichia coli and used to generate polyclonal antibodies. Western blot analysis demonstrated that MnxG is localized to the exosporium of wild-type spores but is absent in the non-oxidizing spores of transposon mutants within the mnx gene cluster. To our knowledge, Mn(II) oxidation is the first oxidase activity, and MnxG one of the first gene products, ever shown to be associated with an exosporium.  相似文献   

20.
The multicopper proteins, nitrous-oxide reductase (N2OR) and cytochrome c oxidase (COX), were investigated by EPR spectroscopy at microwave frequencies 2.4-35 GHz. Our results support a Cu-Cu interaction in COX and N2OR. At least 10 lines in the 2.7-GHz, 12 lines in the 4.6-GHz and 14 lines in the 9.2 GHz spectra were resolved for N2OR. Eight copper lines at 2.7 GHz, about nine lines at 4.6 GHz and about six lines at 9.2 GHz were resolved for COX. Simulations of the EPR spectra were consistent with most of the resonances of the multiline spectra, including regions in the center of the spectra where overlap of the three seven-line patterns is proposed. These simulations indicated that Cu-Cu interaction, in a mixed-valence [Cu(1.5) ... Cu(1.5)], S = 1/2 site is consistent with, if not proof of, the unusual spectral features observed for N2OR and COX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号