首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A radioimmune assay has been used to detect the onset of immunoglobulin synthesis during development. In Xenopus laevis, immunoglobulin is first produced at stage 35 of embryonic development or about the time of emergence of the embryo from its jelly coat. At all embryonic stages measured, beginning at stage 35, both 19 and 7 S immunoglobulin are found. These immunoglobulins contain heavy and light chains identical in size to adult Xenopus IgM. These observations suggest the presence of both cell-associated and circulating IgM in Xenopus embryos.  相似文献   

3.
Normal innervation of embryonic avian cornea is achieved in two distinct phases. During phase I, nerves extend from the ventrotemporal region both dorsally and ventrally around the cornea, but not into it, ultimately encircling the 10th-day cornea. Phase II commences as nerves extend radially from the ring into the corneal stroma and from there into the epithelium. The effect of the glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), on this normal sequence of events has been examined. In ovo administration of 5 μg DON on the 5th day of development inhibits the incorporation of [35S]sulfate in sulfated glycosaminoglycans in both the cornea and control tissues and inhibits the completion of phase I. Phase II of corneal innervation appears to be affected only indirectly and extension of nerves into the cornea does occur. However, the number of nerves entering the DON-treated cornea is dramatically reduced. Administration of DON on the 7th or 9th days of development does not affect corneal innervation, but does demonstrate a clear effect on [35S]sulfate incorporation in sulfated glycosaminoglycans by the cornea and control tissues. These data suggest that nerve ring completion is not a prerequisite for extension of nerves into the cornea and suggest an integral role for glycosaminoglycans in facilitating phase I, but not phase II, of corneal innervation.  相似文献   

4.
Hyaluronidase activity and hyaluronate content were measured in the developing chick heart from embryonic day 3 through posthatching stages. High levels of both enzyme and substrate were found during the earliest stages examined. Hyaluronidase activity gradually declined to 63% of the initial (day 3) level by embryonic day 16. Enzyme activity decreased more sharply during the next 4 days to 30% of the initial level and remained constant through 2 weeks after hatching. Low levels of enzyme activity (about 10% initial levels) were still detectable in 10-week-old chicken hearts. The heart hyaluronidase is an endoglycosidase with an estimated molecular weight of 62,000, which degrades hyaluronate and, to a lesser extent, chondroitin sulfate at an acid pH optimum. Hyaluronate constituted approximately 50% of the total glycosaminoglycan content at embryonic day 5. Between embryonic days 5 and 12, the concentration of hyaluronate decreased to 25–30% of the initial level and remained constant thereafter. The level of other glycosaminoglycans decreased more gradually than hyaluronate and did not reach a constant level until hatching. This pattern of hyaluronidase activity and hyaluronate concentration presumably reflects the extensive tissue remodeling which transforms the developing heart from a thin-walled tube containing extensive regions of extracellular matrix to a compact, thick-walled myocardium having a limited extracellular compartment.  相似文献   

5.
Corneal stroma contains an extracellular matrix of orthogonal lamellae formed by parallel and equidistant fibrils with a homogeneous diameter of ∼35 nm. This is indispensable for corneal transparency and mechanical functions. However, the mechanisms controlling corneal fibrillogenesis are incompletely understood and the conditions required for lamellar stacking are essentially unknown. Under appropriate conditions, chick embryo corneal fibroblasts can produce an extracellular matrix in vitro resembling primary corneal stroma during embryonic development. Among other requirements, cross-links between fibrillar collagens, introduced by tissue transglutaminase-2, are necessary for the self-assembly of uniform, small diameter fibrils but not their lamellar stacking. By contrast, the subsequent lamellar organization into plywood-like stacks depends on lysyl aldehyde-derived cross-links introduced by lysyl oxidase activity, which, in turn, only weakly influences fibril diameters. These cross-links are introduced at early stages of fibrillogenesis. The enzymes are likely to be important for a correct matrix deposition also during repair of the cornea.  相似文献   

6.
The proliferative activity of undifferentiated brain cells from either 5- or 7-day-old chick embryos has been investigated by labeling the cells with a 24-hr pulse label of [14C]- or [3H]-thymidine during the early stages (0 to 8 days) of culture. As soon as the neurons and the glial cells could be distinguished (after 4, 7, or 14 days of culture), the cultures were prepared and submitted to the activated autoradiographic method. In some experiments a continuous labeling was applied up to 2 weeks. During the first 48 hr of culture, and for both embryonic ages studied, nearly all neuronal precursors were able to proliferate. After 4 days in culture for the 7-day-old embryo and 7 days in culture for the 5-day-old embryo most of the neuronal cells stopped dividing. These two culture periods correspond to the stage of the embryonic life when the end of the mitotic activity of neuroblasts occurs in vivo. Thus, the proliferation and development in culture of most neuroblasts was found to parallel the in vivo evolution of these cells. Some neuroblasts, however, continued to multiply in vitro for a longer period of time. The astroblasts precursors were found to multiply actively from the 3rd day on, or immediately from time zero, for the 5- and 7-day-old chick embryos, respectively. These observations seem to indicate that the astroblast precursors are in a latent stage until they have reached Day 7. Thereafter, they proliferate actively during the first week of culture and therefore remain in an embryonic stage during this culture period. This fact corresponds also to the in vivo situation, where the glial cell precursors multiply actively around the same time period.  相似文献   

7.

Background

The extraembryonic tissues, visceral endoderm (VE) and extraembryonic ectoderm (ExE) are known to be important for the induction of primordial germ cells (PGCs) in mice via activation of the bone morphogenetic protein (BMP) signalling pathway. We investigated whether the VE and ExE have a direct role in the specification of PGCs, or in an earlier event, namely the induction of the PGC precursors in the proximal posterior epiblast cells.

Results

We cultured embryonic day (E) 5.75 to E7.0 mouse embryos in an explant-assay with or without extraembryonic tissues. The reconstituted pieces of embryonic and extraembryonic tissues were assessed for the formation of both PGC precursors and specified PGCs. For this, Blimp1:gfp and Stella:gfp transgenic mouse lines were used to distinguish between PGC precursors and specified PGC, respectively. We observed that the VE regulates formation of an appropriate number of PGC precursors between E6.25–E7.25, but it is not essential for the subsequent specification of PGCs from the precursor cells. Furthermore, we show that the ExE has a different role from that of the VE, which is to restrict localization of PGC precursors to the posterior part of the embryo.

Conclusion

We show that the VE and ExE have distinct roles in the induction of PGC precursors, namely the formation of a normal number of PGC precursors, and their appropriate localization during early development. However, these tissues do not have a direct role during the final stages of specification of the founder population of PGCs.  相似文献   

8.
9.
The relationship between the rates of increase of corneal protein fractions and incorporation of labeled precursors has been examined during embryonic and early posthatching development of the chick corneal stroma. Non-collagen protein increased gradually from 9 through 20 days of incubation. Collagen accumulated approximately logarithmically through the 19th day, the most rapid rate occurring between 13 and 20 days of incubation. The rates at which labeled amino acids are incorporated into collagen in vivo and in vitro undergo marked changes during the last week of embryonic development, corresponding closely to the rate of collagen accumulation in vivo; whereas incorporation into non-collagen protein changes much less markedly. Changes in the rate of incorporation of precursors into collagen are not due to changes in the rate of conversion of collagen from the soluble to insoluble form, or to changes in the endogenous amino acid pool size. Chick embryo corneal stroma collagen turns over very slowly, if at all. Non-collagen protein turns over more rapidly. An increase in cell number, as indicated by DNA content, does not account for the increased rate of collagen synthesis between the 9th and 16th day of incubation. It is concluded that the observed changes in collagen synthesis reflect changing activities in the individual cornea fibroblasts. These activities are comparable in the intact tissue in vivo and in isolated corneas in vitro.  相似文献   

10.
Fibroblasts from cornea, heart, and skin of day 14 embryonic chicks demonstrate the ability to make heparan sulfate-like polysaccharide when examined during the 10 hr period immediately following their removal from the embryo. Both the whole tissues from which these fibroblasts are isolated and the fibroblasts grown for 2–5 weeks in vitro also synthesize heparan sulfate. During their first few days in vitro, the three fibroblast populations display increasing rates of [35S]-sulfate and d-[1-3H]-Glucosamine incorporation into glycosaminoglycans and sharp fluctuations of those rates, yet the percentage of total [35S]-sulfate incorporated into heparan sulfate-like polysaccharide and the distribution of this polysaccharide between cells and nutrient medium do not change significantly. During their first 48 hr in vitro, skin fibroblasts, but not those from cornea or heart, show steadily decreasing discrepancies between the proportions of [35S]-sulfate and d-[1-3H]-Glucosamine incorporated into heparan sulfate, suggesting a sharp decline in the synthesis of nonsulfated glycosaminoglycans. These data support the hypothesis of Kraemer than many cell-types in vivo may normally make heparan sulfate. The data largely eliminate the hypothesis that the biosynthesis of this polysaccharide is selectively stimulated as embryonic cells adapt to growth in vitro.  相似文献   

11.
The adult Drosophila midgut is thought to arise from an endodermal rudiment specified during embryogenesis. Previous studies have reported the presence of individual cells termed adult midgut precursors (AMPs) as well as “midgut islands” or “islets” in embryonic and larval midgut tissue. Yet the precise relationship between progenitor cell populations and the cells of the adult midgut has not been characterized. Using a combination of molecular markers and directed cell lineage tracing, we provide evidence that the adult midgut arises from a molecularly distinct population of single cells present by the embryonic/larval transition. AMPs reside in a distinct basal position in the larval midgut where they remain through all subsequent larval and pupal stages and into adulthood. At least five phases of AMP activity are associated with the stepwise process of midgut formation. Our data shows that during larval stages AMPs give rise to the presumptive adult epithelium; during pupal stages AMPs contribute to the final size, cell number and form. Finally, a genetic screen has led to the identification of the Ecdysone receptor as a regulator of AMP expansion.  相似文献   

12.
13.
Lin PP 《Plant physiology》1984,76(2):372-380
Active polyamine biosynthesis occurs in the embryonic axis, but not in the cotyledons, during germination of Glycine max (L.) cv Williams seeds and subsequent growth of the young seedlings. The hypocotyl and radicle synthesize and accumulate considerable amounts of cadaverine (Cad) and putrescine (Put) during the early stages of growth. Most of the amino acid precursors for the diamines are supplied from breakdown of the cotyledonary protein.  相似文献   

14.
Interactions between T cell precursors and thymic stromal cells are essential during thymocyte development. However, the role of the thymus in initial commitment of lymphoid progenitors to the T lineage remains controversial, with data providing evidence for both extra- and intrathymic commitment mechanisms. In this context, it is clear that Notch1 is an important mediator during initiation of T cell development. Here we have analyzed the mechanisms regulating Notch activation in lymphoid precursors at extrathymic sites and in the thymus, including stages representing the first wave of embryonic thymus colonization on embryonic day 12 of gestation. We show that Notch activation in migrant lymphoid precursors requires entry into the thymic microenvironment where they are exposed to Notch ligands expressed by immature thymic epithelial cells. Moreover, continued Notch signaling in such precursors requires sustained interactions with Notch ligands. Collectively, these findings suggest a role for Notch in an intrathymic mechanism of T cell lineage commitment involving sustained interactions with Notch ligand bearing thymic epithelium.  相似文献   

15.
Glycosaminoglycans of the embryonic chicken vitreous were characterized and then were used as markers to establish which tissues synthesize the vitreous humor during development. The glycosaminoglycans are predominantly chondroitin sulfates by several criteria. They are resistant to streptomyces hyaluronidase, an enzyme which degrades only hyaluronate, and are digested by testicular hyaluronidase and chondroitinase AC, enzymes which degrade hyaluronate plus chondroitin 4- and 6-sulfates. On electrophoresis on cellulose acetate in 0.15 M phosphate buffer, pH 6.7, the vitreous glycosaminoglycans migrate slightly slower than authentic chondroitin sulfate, but, in 0.1 N HCl, they migrate very close to chondroitin sulfate standards. Finally, the disaccharides produced by digestion of these radioactively labeled glycosaminoglycans with chondroitinases AC and ABC were identified as Δdi-4S and Δdi-6S, as expected for chondroitin 4- and 6-sulfate. By using incorporation of radioactive precursors into chondroitin sulfates in vitro, we than determined which tissues synthesize the vitreous humor in the developing eye. Late in development, on Day 12–13, the isolated vitreous is very active in chondroitin sulfate synthesis, while the neural retina, the lens, and the pecten are less active and produce a high proportion of enzyme-resistant GAG. The eye tissues isolated from embryos labeled in ovo retain similar amounts and types of glycosaminoglycans, indicating that cells within the vitreous synthesize the vitreous humor glycosaminoglycans at this time. Earlier in development, from Days 6 to 8, the isolated vitreous incorporates very low levels of radioactivity into GAG, but the neural retina incorporates high levels of radioactivity into chondroitin sulfate. When the embryos are labeled in ovo and the same tissues are isolated following incorporation, the vitreous retains more radioactive chondroitin sulfate than does the neural retina. Thus, the vitreous humour glycosaminoglycan is initially synthesized by the neural retina and is secreted into the vitreous space.  相似文献   

16.
17.
18.
Fatty acid synthesis by subcellular fractions of heart and liver of chick embryos at varying stages of development has been studied. Fatty acid synthetase activity is associated with the embryonic heart at early stages of development, as suggested by substrate requirement, Schmidt decarboxylation of synthesized fatty acids and gas liquid chromatographic identification of the products as palmitic and stearic acids. The fatty acid synthetase activity decreases in heart cytosol with age of the embryo and is absent in the newly hatched chick and in older chicken. The acetyl CoA carboxylase activity is negligible in embryonic and adult chicken heart. The fatty acid synthetase activity in liver is low, but measurable during the entire embryonic development. The activity increases by about three-fold on hatching and thereafter in fed, newly hatched chicks by about 35-fold, over the basal embryonic activity. The acetyl and malonyl transacylase activities in the heart and liver cytosols during development followed closely the fatty acid synthetase activities in heart and liver, respectively. A non-coordinate induction of fatty acid synthetase and acetyl CoA carboxylase activities in liver was observed during development. The microsomal chain elongation in liver and heart followed the pattern of fatty acid synthetase activity in liver and heart, respectively. The mitochondrial chain elongation in embryonic heart is initially low and increases with age; while this activity in liver is higher in early stages of embryonic development than in the older embryos and the chicks. Measurement of lipogenesis from acetate-1-14C by liver and heart slices from chick embryos and newly hatched chicks support the conclusions reached in the studies with the subcellular fractions. The results obtained indicate that the major system of fatty acid synthesis in embryonic and adult heart is the mitochondrial chain elongation. In embryonic liver, fatty acid synthesis proceeds by chain elongation, while the de novo system is the major contributor to the lipogenic capacity of the liver after hatching.  相似文献   

19.
20.
Embryonic neural crest-derived melanocytes and their precursors express the kit receptor tyrosine kinase and require its function for their migration and survival. However, mutations in kit also cause deficits in melanocytes that make up adult pigment patterns, including melanocytes that re-establish the zebrafish fin stripes during regeneration. As adult melanocytes in mice and zebrafish are generated and maintained by stem cell populations that are presumably established during embryonic development, it has been proposed that adult phenotypes in kit mutants result from embryonic requirements for kit. We have used a temperature-sensitive zebrafish kit mutation to show that kit is required during adult fin regeneration to promote melanocyte differentiation, rather than during embryonic stages to establish their stem cell precursors. We also demonstrate a transient role for kit in promoting the survival of newly differentiated regeneration melanocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号