首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among a total of 43 accessions ofAlstroemeria aurea, A. ligtu andA. magnifica nuclear DNA amounts (2C-values) showed significant intraspecific variation, 1.09, 1.21 and 1.15 fold, respectively, when determined through flow cytometric measurements of fluorescence of propidium iodide (PI) stained nuclei. After staining with another fluorochrome, 4,6-diamidino-2-phenylindole (DAPI), an intraspecific variation of 1.10, 1.11 and 1.12 fold, respectively, was found. C-band polymorphisms were present among and within the accessions of all three species. In some cases only very small differences in C-banding pattern were observed. In other cases, however, differences were more prominent. Besides C-band polymorphism, there were also instances of chromosome length polymorphism, which concerned the total chromosome complement or single chromosomes. The variation in nuclear DNA amount inA. aurea andA. ligtu was more or less continuous, except for one accession ofA. ligtu subsp.simsii. Artificial selection and possibly introgression of chromosomes from other species may have moulded the karyotypes of some of the accessions ofA. aurea, a species that has been under cultivation for more than 160 years. The variation as observed inA. magnifica subsp.magnifica was discontinuous and could be due to a broad species concept.  相似文献   

2.
Karyotype analysis of Alstroemeria angustifolia ssp. angustifolia,A. aurea, A. inodora, A. ligtu spp. ligtu, A. magnifica ssp.magnifica, A. pelegrina, A. philippii and A. psittacina usingFeulgen-staining and Giemsa C-banding techniques revealed foreach species a characteristic chromosome morphology and C-bandingpattern. These characteristics could be used to identify manyindividual chromosomes in diploid interspecific hybrids. Besidesinterspecific variation, some degree of intraspecific variationin C-banding pattern was observed within A. angustifolia ssp.angustifolia, A. aurea, A. ligtu ssp. ligtu, A. magnifica ssp.magnifica and A. philippii . All species had large chromosomes (2 n =2 x =16) and asymmetrickaryotypes. In many species the short arms of the acrocentricchromosomes were darkly stained upon Giemsa C-banding. Thesetelomeric bands seemed satellites. B-chromosomes were observedin one species, A. angustifolia ssp. angustifolia . A variablenumber of large intercalary and telomeric C-bands was presentin the Chilean species, whereas the Brazilian species showedonly small C-bands. The differences in karyotypes suggest anearly separation of the Chilean and Brazilian species, afterwhich speciation followed different evolutionary pathways. InAlstroemeria the Giemsa C-banding technique can be valuableto plant taxonomists for unravelling species relationships. Alstroemeria ; Inca lily; evolution; Giemsa C-banding; karyotype  相似文献   

3.
Members of three prominent DNA families of Beta procumbens have been isolated as Sau3A repeats. Two families consisting of repeats of about 158 bp and 312 bp are organized as satellite DNAs (Sau3A satellites I and II), whereas the third family with a repeat length of 202 bp is interspersed throughout the genome. Multi-colour fluorescence in situ hybridization was used for physical mapping of the DNA families, and has shown that these tandemly organized families occur in large heterochromatic and DAPI positive blocks. The Sau3A satellite I hybridized exclusively around or near the centromeres of 10, 11 or 12 chromosomes. The Sau3A satellite family I showed high intraspecific variability and high-resolution physical mapping was performed on pachytene chromosomes using differentially labelled repeats. The physical order of satellite subfamily arrays along a chromosome was visualized and provided evidence that large arrays of plant satellite repeats are not contiguous and consist of distinct subfamily domains. Re-hybridization of a heterologous rRNA probe to mitotic metaphase chromosomes revealed that the 18S-5.8S-25S rRNA genes are located at subterminal position on one chromosome pair missing repeat clusters of the Sau3A satellite family I. It is known that arrays of Sau3A satellite I repeats are tightly linked to a nematode (Heterodera schachtii) resistance gene and our results show that the gene might be located close to the centromere. Large arrays of the Sau3A satellite II were found in centromeric regions of 16 chromosomes and, in addition, a considerable interspersion of repeats over all chromosomes was observed. The family of interspersed 202 bp repeats is uniformly distributed over all chromosomes and largely excluded from the rRNA gene cluster but shows local amplification in some regions. Southern hybridization has shown that all three families are specific for genomes of the section Procumbentes of the genus Beta.  相似文献   

4.
 A 823-bp Sau3AI fragment (pSau3A10) was subcloned from a sorghum bacterial artificial chromosome (BAC) clone, 13I16, that contains DNA sequences specific to the centromeres of grass species. Sequence analysis showed that pSau3A10 consists of six copies of an approximately 137-bp monomer. The six monomers were organized into three dimers. The monomers within the dimers shared 62–72% homology and the dimers were 79–82% homologous with each other. Fluorescence in situ hybridization (FISH) analysis indicated that the Sau3A10 family is present only in the centromeres of sorghum chromosomes. Sequencing, Southern hybridization, and Fiber-FISH analyses indicated that the Sau3A10 family is tandemly arranged and is present in uninterrupted stretches of up to at least 81 kb of DNA. Slot-blot analysis estimated that the Sau3A10 family constitutes 1.6–1.9% of the sorghum genome. The long stretches of Sau3A10 sequences were interrupted by other centromeric DNA elements. Southern analysis indicated that the Sau3A10 sequence is one of the most abundant DNA families located in sorghum centromeres and is conserved only in closely related sorghum species. Methylation experiments indicated that the cytosine of the CG sites in sorghum centromeric regions is generally methylated. The structure and organization of the Sau3A10 family shared similarities with centromeric DNA repeats in other eukaryotic species. It is suggested that the Sau3A10 family is probably an important part of sorghum centromeres. Received: 11 November 1997 / Accepted: 17 November 1997  相似文献   

5.
Species-specific repeated DNAs are important for identifying genomic components of hybrid organisms in plant breeding and in taxonomic studies, and we have previously described the HRS60 and GRS families of highly repetitive DNA sequences in tobacco. Here we describe a new family of highly repetitive DNA sequences termed NTRS (SspI family) that we have isolated from Nicotiana tomentosiformis (Goodspeed) and characterized and that is specific for the genomes of several species of the subgenus Tabacum. In situ hybridization showed that NTRS sequences are present in three pairs of chromosomes of N. tomentosiformis, six pairs of chromosomes of N. kawakamii, and only one pair of chromosomes of N. tabacum at an intercalary site. The NTRS family is not present in the N. otophora genome. The majority of NTRS sequences appeared to be organized in tandem arrays in which local DNA structures sensitive to single strand-specific chemical probes, potassium permanganate, and osmium tetroxide complexed with pyridine revealed a periodicity of 220 bp, equal to the length of the repeat unit. The inner cytosine in CCGG and CC(A/T)GG sequences of the NTRS family is frequently methylated. Cloned and sequenced NTRS monomeric units are 212–219 bp in length and show 83.5%–95% mutual homology. They exhibit properties characteristic for molecules that possess stable intrinsic curvature, but there are differences among individual monomers in the degree of curvature. NTRS sequences like HRS60 and GRS sequences, were found to specify nucleosome positions. Received: 12 November 1996 / in revised form: 12 May 1997 / Accepted: 12 May 1997  相似文献   

6.
A collection of 87 strains of the soft rot pathogen Erwinia carotovora ssp. carotovora (Ecc) isolated from various host plants in Japan, Korea and Thailand was characterized by bacteriological, pathological and genetic properties. On the basis of pathogenicity on the potato, tomato, onion and cucumber, strains were divided into four groups. They were also characterized by PCR‐restriction fragment length polymorphisms (RFLP) of 16S ribosomal DNA (rDNA), 16S‐23S rDNA intergenic spacer regions (ISRs) and a pel gene encoding pectate lyase. By analysis of 16S rDNA RFLP generated by Hinf I, Ecc strains were differentiated into two groups where it was discovered that most strains from Korea and Japan belonged to the same group. In the analysis of ISRs RFLP with MboI, two patterns were found. All Thai strains showed the same pattern. In the analysis of the pel gene RFLP with Sau3AI, all strains were separated into two independent patterns except for one strain. The strain (MAFF 301937) isolated from the mulberry showed a unique RFLP pattern of the pel gene. In cluster analysis based on 26 phenotypic characters, Ecc strains were composed of two groups, A and B. Group A contained typical Ecc strains which provided negative reactions in testing the production of reducing substances from sucrose and acids from α‐methyl glucoside. All Thai strains and most of the Korean strains belonged to group A, whereas group B contained atypical Ecc strains, which were isolated in Japan and Korea; the properties of this group were similar to those of E. carotovora ssp. atroseptica. The research reported here was undertaken to provide information on the strains of E. carotovora ssp. carotovora in Asia.  相似文献   

7.
 Three repetitive DNA sequences were isolated from a genomic DNA library of the ornamental Alstroemeria aurea Graham. Two repeats, A001-I and A001-II, were quite homologous and highly A. aurea-specific. A001-I was a 217-bp sequence with several telomeric TTTAGGG repeats at the 5′ end and a unique sequence of 98 bp at the other end. The third repeat, A001-IV, was a 840-bp sequence which contained two sub-sequences of 56 and 74 bp respectively, previously found in chloroplast (cp) DNA of tobacco and spinach and to a lesser extent in the cpDNA of maize and rice. Repeat A001-IV was not species-specific and its hybridization signal was weaker than the other repeats. Fluorescence in situ hybridization (FISH) revealed the A. aurea-specific repeats to be located in the heterochromatic regions of all A. aurea chromosomes. The differences in FISH pattern make them useful tools for karyotype analysis. The non-species-specific sequence A001-IV gave a dispersed signal over all the Alstroemeria chromosomes in an interspecific hybrid. The potential use of these repetitive DNA sequences for the study of phylogenetic relationships within the genus Alstroemeria is discussed. Received: 24 November 1996/Accepted: 20 December 1996  相似文献   

8.
Centromeric repetitive sequences were isolated from Arabidopsis halleri ssp. gemmifera and A. lyrata ssp. kawasakiana. Two novel repeat families isolated from A. gemmifera were designated pAge1 and pAge2. These repeats are 180 bp in length and are organized in a head-to-tail manner. They are similar to the pAL1 repeats of A. thaliana and the pAa units of A. arenosa. Both A. gemmifera and A. kawasakiana possess the pAa, pAge1 and pAge2 repeat families. Sequence comparisons of different centromeric repeats revealed that these families share a highly conserved region of approximately 50 bp. Within each of the four repeat families, two or three regions showed low levels of sequence variation. The average difference in nucleotide sequence was approximately 10% within families and 30% between families, which resulted in clear distinctions between families upon phylogenetic analysis. FISH analysis revealed that the localization patterns for the pAa, pAge1 and pAge2 families were chromosome specific in A. gemmifera and A. kawasakiana. In one pair of chromosomes in A. gemmifera, and three pairs of chromosomes in A. kawasakiana, two repeat families were present. The presence of three families of centromeric repeats in A. gemmifera and A. kawasakiana indicates that the first step toward homogenization of centromeric repeats occurred at the chromosome level.Communicated by W. R. McCombie  相似文献   

9.
Summary Repetitive DNA sequences present in the grapevine genome were investigated as probes for distinguishing species and cultivars. Microsatellite sequences, minisatellite sequences, tandemly arrayed genes and highly repetitive grapevine sequences were studied. The relative abundance of microsatellite and minisatellite DNA in the genome varied with the repeat sequence and determined their usefulness in detecting RFLPs. Cloned Vitis ribosomal repeat units were characterised and showed length heterogeneity (9.14–12.15 kb) between and within species. A highly repetitive DNA sequence isolated from V. vinifera was found to be specific only to those species classified as Euvitis. DNA polymorphisms were found between Vitis species and between cultivars of V. vinifera with all classes of repeat DNA sequences studied. DNA sequences suitable for DNA fingerprinting gave genotype-specific patterns for all of the cultivars and species examined. The DNA polymorphisms detected indicates a moderate to high level of heterozygosity in grapevine cultivars.On leave from the Biochemical Research Institute, Nippon Menard Cosmetic Co, Ltd, Ogaki Gifuken, 503 Japan  相似文献   

10.
We isolated 12 highly conserved polymorphic microsatellite loci for the yellow‐cress species Rorippa amphibia and Rorippa sylvestris. We used a partial genomic library enriched for several repeat motifs. Obtained sequences containing repetitive elements were blasted and aligned with the Arabidopsis thaliana sequence. We evaluated the cross‐species compatibility of primers designed from sequences either aligning strongly or weakly with A. thaliana. The former proved much more efficient in obtaining primers that worked in both species. The developed conserved primers for microsatellite loci provide excellent markers for studying segregation, gene flow and hybridization in the genus Rorippa.  相似文献   

11.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

12.
Meiotic or mitotic chromosomes of seven Alstroemeria taxa, native in Argentina and Chile and with Andean distribution were studied: A. andina ssp. venustula, A. hookeri ssp. cummingiana , A. hookeri ssp. recumbens , A. pallida , A. patagonica , A. pseudospathulata and A. pygmaea . All were diploid with 2 n = 16. Karyotypes of A. andina ssp. venustula and A. pygmaea were analysed, revealing similarity to previously analysed species. Thus, to all existing arguments for not retaining Schickendantzia as a separate genus, we can add another one which merges A. pygmaea with other Alstroemeria species, and does not support its taxonomic uniqueness. In general, the meiotic behaviour was normal, with regular formation of eight bivalents except in A. hookeri ssp. cummingiana , in one plant of which meiotic irregularities at various stages were observed. At the tetrad stage a large percentage of the cells presented micronuclei. The presence of 0–2 supernumerary chromosomes in A. hookeri ssp. recumbens is recorded. The karyotype asymmetry presented by most Alstroemeria species is discussed. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 451–459.  相似文献   

13.
. In the chironomid Acricotopus lucidus, parts of the genome, the germ line-limited chromosomes, are eliminated from the future soma cells during early cleavage divisions. A highly repetitive, germ line-specific DNA sequence family was isolated, cloned and sequenced. The monomers of the tandemly repeated sequences range in size from 175 to 184 bp. Analysis of sequence variation allowed the further classification of the germ line-restricted repetitive DNA into two related subfamilies, A and B. Fluorescence in situ hybridization to gonial metaphases demonstrated that the sequence family is highly specific for the paracentromeric heterochromatin of the germ line-limited chromosomes. Restriction analysis of genomic soma DNA of A. lucidus revealed another tandem repetitive DNA sequence family with monomers of about 175 bp in length. These DNA elements are found only in the centromeric regions of all soma chromosomes and one exceptional germ line-limited chromosome by in situ hybridization to polytene soma chromosomes and gonial metaphase chromosomes. The sequences described here may be involved in recognition, distinction and behavior of soma and germ line-limited chromosomes during the complex chromosome cycle in A. lucidus and may be useful for the genetic and cytological analysis of the processes of elimination of the germ line-limited chromosomes in the soma and germ line. Received: 12 April 1997; in revised form 26 June 1997 / Accepted: 29 June 1997  相似文献   

14.
A family of dispersed repetitive sequences (Hch1) which is present in the genome of the wild barley Hordeum chilense was studied in detail. Hch1 sequences are found both as part of short tandem arrays and dispersed throughout the H. chilense chromosomes. Subcloning of sections of the sequence reveals that it is composed of unrelated classes of sequences which can also be found separately in other genomic locations. Analysis of these sequences in the genomes of wheat and two other wild barley species strongly suggests that specific amplifications and arrangements of the repeated sequences have taken place during speciation. Nucleotide sequence analysis fails to detect, in their entirity, the features shown by plant transposons.  相似文献   

15.
In fifteen geographically isolated populations of five species of Alstroemeria L. (A. aurea, A. hookeri, A. ligtu, A. pelegrina and A. presliana) collected in Chile, karyotypes and variation of RAPD markers were investigated. Tandemly repeated DNA sequences - 5S and 18/25S rDNA genes and the sequence A001-1 (De Jeu et al. 1997) were used to characterize karyotypes by fluorescence in situ hybridization (FISH). Ten somatic metaphases per population were used for measurement of chromosome length. Differences in RAPD marker bands were used for characterization of populations, creating a similarity index. FISH with all three DNA probes shows a high degree of polymorphism between and sometimes also within accessions of A. aurea, A. hookeri and A. ligtu. The number of chromosome pairs showing 5S rDNA signals is more different for the investigated species A. aurea, A. hookeri, A. ligtu, A. pelegrina and A. presliana with 5, 7, 5, 3 and 7, respectively, than the number of 18/25S rDNA signals in this succession with 7, 7, 6, 5 and 7 chromosome pairs, showing a high evolutionary dynamics within the genus. Furthermore, among the four populations of A. hookeri, accession 4181 was different in arm length of chromosome 3. RAPD markers (index of similarity) also showed a greater genetic distance of accession 4181 from the other three accessions of A. hookeri. The possible evolutionary mechanisms providing these polymorphisms were discussed.  相似文献   

16.
Summary We isolated three different repetitive DNA sequences from B. campestris and determined their nucleotide sequences. In order to analyze organization of these repetitive sequences in Brassica, Southern blot hybridization and in situ hybridization with metaphase chromosomes were performed. The sequence cloned in the plasmid pCS1 represented a middle repetitive sequence present only in B. campestris and not detected in closely related B. Oleracea. This sequence was localized at centromeric regions of six specific chromosomes of B. campestris. The second plasmid, pBT4, contained a part of the 25S ribosomal RNA gene, and its copy number was estimated to be 1,590 and 1,300 per haploid genome for B. campestris and B. oleracea, respectively. In situ hybridization with this sequence showed a clear signal at the NOR region found in the second largest chromosome of B. Campestris. The third plasmid, pBT11, contained a 175-bp insert that belongs to a major family of tandem repeats found in all the Brassica species. This sequence was detected at centromeric regions of all the B. campestris chromosomes. Our study indicates that in situ hybridization with various types of repetitive sequences should give important information on the evolution of repetitive DNA in Brassica species.  相似文献   

17.
Summary Six members of a family of moderately repetitive DNA sequences from kiwifruit (Actinidia deliciosa var. deliciosa) have been cloned and characterized. The repeat family is composed of elements that have a unit length of 463 bp, are highly methylated, occur in tandem arrays of at least 50 kb in length, and constitute about 0.5% of the kiwifruit genome. Individual elements diverge in nucleotide sequence by up to 5%, which suggests that the repeat sequence is evolving rapidly. Homologous sequences were found in A. deliciosa var. chlorocarpa. The repeat sequence was not found under low stringency hybridization conditions in the diploid A. chinensis, the species most closely related to the hexaploid kiwifruit, or in eight other Actinidia species. However, homologous repeats were detected in a tetraploid species, A. chrysantha. The results provide the first molecular evidence to suggest that kiwifruit may be an allopolyploid species.  相似文献   

18.
In an ongoing effort to trace the evolution of the sex chromosomes of Silene latifolia, we have searched for the existence of repetitive sequences specific to these chromosomes in the genome of this species by direct isolation from low-melting agarose gels of satellite DNA bands generated by digestion with restriction enzymes. Five monomeric units belonging to a highly repetitive family isolated from Silene latifolia, the SacI family, have been cloned and characterized. The consensus sequence of the repetitive units is 313 bp in length (however, high variability exists for monomer length variants) and 52.9% in AT. Repeating units are tandemly arranged at the subtelomeric regions of the chromosomes in this species. The sequence does not possess direct or inverted sequences of significant length, but short direct repeats are scattered throughout the monomer sequence. Several short sequence motives resemble degenerate monomers of the telomere repeat sequence of plants (TTTAGGG), confirming a tight association between this subtelomeric satellite DNA and the telomere repeats. Our approach in this work confirms that SacI satellite DNA sequences are among the most abundant in the genome of S. latifolia and, on the other hand, that satellite DNA sequences specific of sex chromosomes are absent in this species. This agrees with a sex determination system less cytogenetically diverged from a bisexual state than the system present in other plant species, such as R. acetosa, or at least a lesser degree of differentiation between the sex chromosomes of S. latifolia and the autosomes.  相似文献   

19.
Minisatellites, microsatellites, and short random oligonucleotides all uncover highly polymorphic DNA fingerprint patterns in Southern analysis of genomic DNA that has been digested with a restriction enzyme having a 4-bp specificity. The polymorphic nature of the fragments is attributed to tandem repeat number variation of embedded minisatellite sequences. This explains why DNA fingerprint fragments are uncovered by minisatellite probes, but does not explain how it is that they are also uncovered by microsatellite and random oligonucleotide probes. To clarify this phenomenon, we sequenced a large bovine genomic BamHI restriction fragment hybridizing to the Jeffreys 33.6 minisatellite probe and consisting of small and large Sau3A-resistant subfragments. The large Sau3A subfragment was found to have a complex architecture, consisting of two different minisatellites, flanked and separated by stretches of unique DNA. The three unique sequences were characterized by sequence simplicity, that is, a higher than chance occurrence of tandem or dispersed repetition of simple sequence motifs. This complex repetitive structure explains the absence of Sau3A restriction sites in the large Sau3A subfragment, yet provides this subfragment with the ability to hybridize to a variety of probe sequences. It is proposed that a large class of interspered tracts sharing this complex yet simplified sequence structure is found in the genome. Each such tract would have a broad ability to hybridize to a variety of probes, yet would exhibit a dearth of restriction sites. For each restriction enzyme having 4-bp specificity, a subclass of such tracts, completely lacking the corresponding restriction sites, will be present. On digestion with the given restriction enzyme, each such tract would form a large fragment. The largest fragments would be those that contained one or more long minisatellite tracts. Some of these large fragments would be highly polymorphic by virtue of the included minisatellite sequences; by virtue of their complex structure, all would be capable of hybridizing to a wide variety of probes, uncovering a DNA fingerprint pattern.  相似文献   

20.
Characterization of Repetitive DNA Elements in Arabidopsis   总被引:1,自引:0,他引:1  
We have applied computational methods to the available database and identified several families of repetitive DNA elements in the Arabidopsis thaliana genome. While some of the elements have features expected of either miniature inverted-repeat transposable elements (MITEs) or retrotransposons, the most abundant class of repetitive elements, the AthE1 family, is structurally related to neither. The AthE1 family members are defined by conserved 5′ and 3′ sequences, but these terminal sequences do not represent either inverted or direct repeats. AthE1 family members with greater than 98% identity are easily identified on different Arabidopsis chromosomes. Similar to nonautonomous DNA-based transposon families, the AthE1 family contains members in which the conserved terminal domains flank unrelated sequences. The primary utility of characterizing repetitive sequences is in defining, at least in part, the evolutionary architecture of specific Arabidopsis loci. The repetitive elements described here make up approximately 1% of the available Arabidopsis thaliana genomic sequence. Received: 13 October 1998 / Accepted: 30 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号