首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro phagocytosis of erythrocytes by hemocytes of B. glabrata, intermediate host of S. mansoni, is strongly influenced by calcium, several lectins, and plasma factors. Our results indicate that two different mechanisms of non-self-recognition in B. glabrata may occur: (1) In the presence of calcium, phagocytosis occurs in noninfected and in infected snails without involvement of any other substances, and hemocytes of schistosome resistant as well as those of susceptible snails are able to recognize and phagocytose the target cells. (2) In the absence of calcium, phagocytosis occurs if bridging molecules (heterologous lectins in our assays) were present for which effector and target cells possess binding sites or if target cells were plasma coated prior to the assays. In suspensions in homologous plasma, hemocytes of both snail strains, infected or noninfected, subsequently showed phagocytic activities of about 70-80%. Preincubation of target cells in homologous plasma resulted in similar high phagocytic activities of hemocytes even in the absence of plasma during the standard assay. In these assays, a significantly higher proportion of hemocytes of resistant snails phagocytosed plasma-opsonized erythrocytes, whereas hemocytes of susceptible snails internalized less erythrocytes per cell and needed 60 min to phagocytose at percentages equivalent to that of resistant hemocytes within 10 min. Preincubation of erythrocytes in resistant plasma significantly increased the subsequent phagocytic activity of susceptible hemocytes, whereas preincubation of erythrocytes in susceptible plasma decreased the phagocytosis level of resistant hemocytes.  相似文献   

2.
The compatibility between strains of Schistosoma mansoni from Egypt, Kenya, Sudan, Uganda, the West Indies, and Zaire (two strains which came from Katanga and from Kinshasa), and various species and strains of Biomphalaria, i.e. Biomphalaria pfeifferi, B. alexandrina, B. glabrata and B. camerunensis was investigated. Data as mortality, rate of infection of the surviving snails, duration of infection, cercarial production per day per positive snail, etc., were observed. The main emphasis was placed on determining the total cercarial production per 100 exposed snails for each snail population. It was possible to infect all the tested populations of B pfeifferi with the various strains of S. mansoni, but the observation as e.g. TCP/100 exposed snails varied greatly according to the population of snail and the strain of S. mansoni. The results for the remaining species of Biomphalaria varied greatly, depending on the combination, e.g. B. alexandrina was only susceptible to the local S. mansoni from Egypt. The highest TCP/100 exposed snails was more than 1 million for the strains of S. mansoni from Egypt, Kenya and the West Indies in B. alexandrina, B. pfeifferi and B. glabrata, respectively. The next group, with a TCP/100 exposed snails on 7--800 000 consists of S. mansoni from Sudan, Uganda and Zaire (Katanga) all in B. pfeifferi. The last tested strain of S. mansoni, Zaire (Kinshasa) yielded a cercarial production on 500 000 per 100 exposed snails in B. pfeifferi and B. camerunensis. The shortest prepatent period, 19 days, was observed for S. mansoni from Kinshasa, Zaire, in B. camerunensis, and the longest prepatent period, 25 days, was found for strains from Egypt and from the West Indies in B. alexandrina and B. glabrata, respectively. In general, a very long duration of infection, lasting up to 200 days, was observed.  相似文献   

3.
A heat-labile plasma factor from genetically resistant 10-R2 Biomphalaria glabrata snails confers passively transferred resistance (PTR) to Schistosoma mansoni when injected into susceptible snails within 24-hr of exposure to miracidia. However, no additional details on PTR have emerged since the initial 1984 report, nor has the plasma resistance factor been characterized. In the present study, new information is provided on the occurrence of resistance factor in plasma of additional types of snails, effect of "priming" resistant plasma donors by prior exposure to miracidia, duration of PTR, molecular weight of resistance factor, and fate of sporocysts in snails with PTR. Susceptible NIH albino snails injected 24 hr prior to exposure to miracidia with individual samples of plasma from a different strain (Salvador B. glabrata) or a different species (B. obstructa) of nonsusceptible snail displayed infection prevalences of 49% or 59% of control levels, respectively, whereas injections of homologous plasma had no effect. PTR was not enhanced by prior exposure of resistant Salvador plasma donors to miracidia. Unexpectedly, PTR induced by injections of Salvador plasma persisted for at least 21 days. The molecular weight of the resistance factor(s) was between 10 and 30 kDa, based on results of centrifugal ultrafiltration. A significantly higher proportion of dead sporocysts occurred in histological sections of tentacles from snails injected with Salvador plasma than in tentacles of snails injected with NIH albino plasma at 7 days postexposure to miracidia. Most dead sporocysts in Salvador plasma-injected snails were undergoing gradual degeneration, rather than rapid, hemocyte-mediated destruction, as occurred in Salvador snails.  相似文献   

4.
Schistosoma mansoni modulation of phagocytosis in Biomphalaria glabrata   总被引:1,自引:0,他引:1  
Both short-term (3 hr) exposure of Biomphalaria glabrata snails (M-line and 13-16-R1) to Schistosoma mansoni (PR1) miracidia and in vitro incubation of parasite sporocysts with host hemolymph components altered host phagocytic ability. Hemocytes obtained from susceptible (M-line) snails that had been exposed to parasite miracidia for 3 hr showed reduced levels of phagocytosis of yeast cells in vitro compared to hemocytes from unexposed individuals. Incubation of whole hemolymph with sporocysts in vitro also reduced yeast phagocytosis in this susceptible strain. In contrast, resistant (13-16-R1) hemocytes showed increased levels of yeast phagocytosis after in vitro incubation with the parasite, and the opsonic properties of 13-16-R1 plasma were greater after exposure of snails to miracidia. These strain-specific effects of S. mansoni on host hemocyte phagocytosis and plasma opsonization were seen only when both plasma and hemocytes were present at the time of exposure to the parasite.  相似文献   

5.
Helisoma spp. snails are not susceptible to infection with miracidia of Schistosoma mansoni because the miracidia do not penetrate them. However, in view of the phylogenetic proximity and histocompatibility between Helisoma spp. and the normal intermediate host, Biomphalaria glabrata , schistosome miracidia conceivably could survive if experimentally introduced into the hemocoel of Helisoma spp. To test this hypothesis, schistosome-susceptible NIH albino B. glabrata, schistosome-resistant Salvador B. glabrata, and Helisoma duryi were injected with miracidia of S. mansoni, and the outcome was followed both by monitoring snails for infection for several weeks and by histological examination at 24 and 48 hr post-injection (PI). Patent infections developed in most NIH albino snails but in none of the Salvador B. glabrata or H. duryi individuals. Histological analysis showed a higher proportion of normal sporocysts in various tissues of NIH albino snails at both time periods relative to Salvador snails, which contained mostly sporocysts undergoing hemocytic encapsulation. In H. duryi , nearly all sporocysts were dead by 48 hr PI.  相似文献   

6.
Abstract. The cytokine interleukin-1β (IL-1β) mediates interactions of immune and inflammatory cells in mammals. Previous reports also have linked plasma (cell-free hemolymph) levels of IL-1β in the snail Biomphalaria glabrata to resistance against Schistosoma mansoni . In the present study, fluorescent probes were used to study larval schistosome and snail hemocyte viability during in vitro encounters. Hemolymph (plasma and hemocytes) from schistosome-susceptible (M-line) and resistant (13–16-R1) B. glabrata was added to sporocysts of S. mansoni and the viability of hemocytes and parasites was assessed. Next, IL-1β was added to sporocyst-hemolymph samples, the viability of sporocysts and hemocytes determined and then compared to control assays. The number of live sporocysts present after incubation for 1 h with hemolymph from M-line snails was significantly greater than the number seen when hemolymph from 13–16-R1 snails was tested. Nearly all sporocysts survived the 1 h incubation with M-line hemolymph, and most of the hemocytes attached to sporocysts were dead. In contrast, nearly all sporocysts were dead when hemolymph from 13–16-R1 snails was tested, and most attached hemocytes were alive. Addition of IL-1β to M-line hemolymph resulted in a dramatic increase in sporocyst death. Addition of IL-1β to 13–16-R1 hemolymph produced a small but significant increase in the rate of sporocyst death. These results indicate that the concentration of IL-1β present in hemolymph from B. glabrata is directly related to the ability of this snail to kill S. mansoni sporocysts in vitro.  相似文献   

7.
Recent evidence supports the involvement of inducible, highly diverse lectin-like recognition molecules in snail hemocyte-mediated responses to larval Schistosoma mansoni. Because host lectins likely are involved in initial parasite recognition, we sought to identify specific carbohydrate structures (glycans) shared between larval S. mansoni and its host Biomphalaria glabrata to address possible mechanisms of immune avoidance through mimicry of elements associated with the host immunoreactivity. A panel of monoclonal antibodies (mABs) to specific S. mansoni glycans was used to identify the distribution and abundance of shared glycan epitopes (glycotopes) on plasma glycoproteins from B. glabrata strains that differ in their susceptibilities to infection by S. mansoni. In addition, a major aim of this study was to determine if larval transformation products (LTPs) could bind to plasma proteins, and thereby alter the glycotopes exposed on plasma proteins in a snail strain-specific fashion. Plasma fractions (< 100 kDa/> 100 kDa) from susceptible (NMRI) and resistant (BS-90) snail strains were subjected to SDS-PAGE and immunoblot analyses using mAB to LacdiNAc (LDN), fucosylated LDN variants, Lewis X and trimannosyl core glycans. Results confirmed a high degree of glycan sharing, with NMRI plasma exhibiting a greater distribution/abundance of LDN, F-LDN and F-LDN-F than BS-90 plasma (< 100 kDa fraction). Pretreatment of blotted proteins with LTPs significantly altered the reactivity of specific mABs to shared glycotopes on blots, mainly through the binding of LTPs to plasma proteins resulting in either glycotope blocking or increased glycotope attachment to plasma. Many LTP-mediated changes in shared glycans were snail-strain specific, especially those in the < 100 kDa fraction for NMRI plasma proteins, and for BS-90, mainly those in the > 100 kDa fraction. Our data suggest that differential binding of S. mansoni LTPs to plasma proteins of susceptible and resistant B. glabrata strains may significantly impact early anti-larval immune reactivity, and in turn, compatibility, in this parasite-host system.  相似文献   

8.
Earlier in vivo work by Lie et al. (1977) indicated that the innate resistance of the 10R2 strain of Biomphalaria glabrata to PR1 Schistosoma mansoni could be interfered with if the snails were infected previously with another trematode, Echinostoma paraensei. We have studied this interference phenomenon using in vitro methods in an attempt to understand its mechanistic basis. Hemolymph, derived from 10R2 snails infected with E. paraensei for 14-28 days, killed 25% of S. mansoni sporocysts in vitro, significantly less (P less than 0.001) than the 90% killing rate observed with hemolymph from uninfected, control 10R2 snails. Hemolymph from the infected 10R2 snails and from schistosome susceptible M line snails did not differ significantly (P greater than 0.1) in their relative inability to kill S. mansoni sporocysts in vitro. The defect in sporocyst killing exhibited by echinostome infected 10R2 snails was traced to the cellular, rather than the humoral, component of the hemolymph. Preparations containing uninfected 10R2 snail hemolymph and echinostome daughter rediae exhibited significantly less (P less than 0.001) killing of S. mansoni sporocysts than did controls containing only 10R2 hemolymph and S. mansoni sporocysts. Our results suggest that echinostome larvae release factors that interfere with the ability of B. glabrata hemocytes to kill S. mansoni sporocysts.  相似文献   

9.
Although Schistosoma mansoni occurs mainly in the tropics, where intense levels of solar radiation are present, the impact of ultraviolet (UV) light on schistosome transmission is not known. The purpose of this study was to investigate potential effects of UVB (290-320nm) on juvenile Biomphalaria glabrata, the snail intermediate host of S. mansoni. Albino and wild-type snails were exposed to doses of UVB from UV-fluorescent lamps, and the following were measured: survival, photoreactivation (light-mediated DNA repair), effects on feeding behavior, and morphological tissue abnormalities. Irradiation with UVB is lethal to B. glabrata in a dose-dependent manner. Exposure to white light subsequent to UVB irradiation enhances survival, probably by photoreactivation. The shell offers some, but not complete, protection. Experiments in which UVB transmittance through the shell was blocked with black nail polish suggest that injury to both exposed (headfoot) and shell-enclosed (mantle and visceral mass) tissues contributes to mortality in lethally irradiated snails. Wild-type (pigmented) snails are less susceptible to lethal effects of UVB than albino snails, and they may be more capable of photoreactivation. UVB exposure inhibits snail feeding behavior, and causes tentacle forks and growths on the headfoot. Thus, UVB may influence the life cycle of S. mansoni by both lethal and sub-lethal damage to the snail intermediate host. However, the ability of snails to photoreactivate may mitigate these effects.  相似文献   

10.
11.
The icthyosporean, Capsaspora owczarzaki, a known predator of Schistosoma mansoni sporocysts in vitro, is more prevalent in laboratory-reared strains of the intermediate snail host, Biomphalaria glabrata resistant to S. mansoni, than from the susceptible M line strain. We examined whether B. glabrata resistant to the NIH-PR-1 strain of S. mansoni from 2 regions in Brazil were also host to C. owczarzaki. Symbiont presence was examined using hemolymph culturing and nested polymerase chain reaction of snail genomic DNA with primers designed to specifically amplify sequences from relatives of the Icthyosporea. All B. glabrata of the resistant Salvador strain from the laboratory of Dr. Lobato Paraense in Rio de Janeiro, Brazil (n = 46) tested negative for symbionts. Three of 18 semiresistant 10-R2 B. glabrata from the laboratory of Dr. Barbosa in Recife, Brazil tested positive for C. owczarzaki. Another icthyosporean, Anurofeca sp., was identified from 1, 10-R2 snail and from 2 of 12 field-collected B. glabrata from Praia do Forte Orange, Ilha de Itamaracá. Snails from 2 other sites, Hotel Colibri, Pontezinha and Praia do Sossego, Ilha de Itamaracá, were negative for Anurofeca. Two genera of ciliates were also identified. Paruroleptus sp. was found in 4, 10-R2 snails and Trichodina sp. was identified in 2 field-collected snails from Praia do Forte Orange and Praia do Sossego.  相似文献   

12.
To measure the longevity of sporocysts of Schistosoma mansoni in nonsusceptible snails (13-16-R1 and Salvador strains of Biomphalaria glabrata, and Biomphalaria obstructa), the head-foot (HF) of miracidia-exposed snails was transplanted into the hemocoel of a susceptible NIH albino recipient at 1-36 days postexposure (DPE). Recipient snails which were not exposed to miracidia then were monitored for infection transferred by the implant, and infection prevalences in recipients of HF transplants from nonsusceptible donors were compared to those in snails implanted with an HF from NIH albino donors. Transplants from NIH albino snails between 1 to 15 DPE infected 98% of recipients. Similarly, at 1 DPE, 69-85% of transplants from nonsusceptible snails contained viable sporocysts, as shown by resulting patent infections in the recipients. Recipient infection prevalence, and presumably numbers of transplants containing viable sporocysts, declined as a function of DPE, and by 5-9 DPE this decrease was significant for all 3 types of nonsusceptible donors. However, viable sporocysts still occurred in B. obstructa and 13-16-R1 B. glabrata as late as 19 and 20 DPE, respectively, and in Salvador B. glabrata as late as 33 DPE. Thus, sporocysts persist in nonsusceptible snails considerably longer than suggested by results of previous histological studies.  相似文献   

13.
To elucidate the mechanisms of antischistosoma resistance, drug-resistant Schistosoma mansoni laboratory isolates are essential. We developed a new method for inducing resistance to praziquantel (PZQ) using successive drug treatments of Biomphalaria glabrata snails infected with S. mansoni. Infected B. glabrata were treated three times with 100 mg/kg PZQ for five consecutive days with a one-week interval between them. After the treatment, the cercariae (LE-PZQ) produced from these snails and the LE strains (susceptible) were used to infect mice. Forty-five days after infection, mice were treated with 200, 400 or 800 mg/kg PZQ. Thirty days post-treatment, we observed that the mean number of worms recovered by perfusion was significantly higher in the group of mice infected with the LE-PZQ isolate treated with 200 and 400 mg/kg in comparison to the LE strain with the same treatment. Moreover, there was a significant difference between the ED50 (effective dose required to kill 50% of the worms) of the LE-PZQ isolate (362 mg/kg) and the LE strain (68 mg/kg). In the in vitro assays, the worms of the LE-PZQ isolate were also less susceptible to PZQ. Thus, the use of infected snails as an experimental model for development of resistance to S. mansoni is effective, fast, simple and cheap.  相似文献   

14.
Biomphalaria glabrata infected with Schistosoma mansoni for 33 days fed more often than uninfected snails. Whereas uninfected snails had nocturnal increases in feeding, snails with a 33-day-old infection of S. mansoni fed as often during the day as in the night. Using direct observation and film analysis, we found that feeding increased the heartbeat rate and locomotor activity of B. glabrata. When snails were allowed to feed ad lib., infected snails had higher heartbeat rates than uninfected snails both during the day (P less than 0.01) and the night (P less than 0.001). However, when the snails were deprived of food for 24 hr, infected snails had slightly higher heartbeat rates than uninfected snails only during the day (P less than 0.05). There was no difference between the heartbeat rates of feeding, infected snails and the heartbeat rates of uninfected snails that were starved for 8 hr, and then allowed to feed. Uninfected snails had nocturnal increases in heartbeat rate regardless of feeding schedule, but infected snails had greater nighttime heartbeat rate than daytime heartbeat rate only when they were not allowed to feed. Infected snails had less nocturnal locomotor activity than uninfected snails when feeding, but there was no difference between the locomotor activity of infected and uninfected snails when the snails were deprived of food for 24 hr. Absence of food also resulted in an increased nighttime to daytime ratio of locomotor activity of infected snails. These results suggest that the increased heartbeat rate and altered rhythms of heartbeat rate and locomotor activity in B. glabrata infected with S. mansoni for 33 days were caused by the altered feeding response of these snails.  相似文献   

15.
Sixteen species of aquatic snails of four families were tested by quantitative technique under standardized conditions for their suitability as intermediate hosts for Angiostrongylus cantonensis. These species were the planorbid snails Biomphalaria glabrata, Biomphalaria alexandrina, Planorbis planorbis, Planorbis intermixtus, Bulinus truncatus, Bulinus contortus, Bulinus africanus, Bulinus tropicus and Helisoma sp.; the lymnaeid snails Lymnaea natalensis, Lymnaea tomentosa, Lymnaea stagnalis, and Stagnicola elodes; the physid snail Physa acuta (an Egyptian and a German strain) and the ampullariid snails Marisa cornuarietis and Lanistes carinatus. All these snail species proved to be susceptible to infection with A. cantonensis, and first stage larvae reached the infective third stage in all of them. However, the rate and intensity of infection varied with different species. B. glabrata was the most susceptible snail species with a 100% infection rate and an average percentage recovery of third stage larvae of 26.1. This was followed by S. elodes and B. africanus, with a 100% infection rate and an average percentage recovery of third stage larvae of 15.6 and 14.6 respectively. The rest of snail species proved to be less susceptible. For comparative evaluation of the suitability of the various snail species as intermediate hosts of A. cantonensis a "Capacity Index" was determined. This index should provide a useful method for the evaluation of the suitability of various snails as intermediate hosts of nematode parasites under standardized conditions in the laboratory.  相似文献   

16.
Circadian rhythms in the emergence of S. mansoni cercariae from Biomphalaria tenagophila and B. glabrata, snail hosts of schistosomosis in Brazil, were investigated. A total of 35 specimens of B. tenagophila (São Paulo, Brazil) and 12 B. glabrata (Minas Gerais, Brazil) exposed individually to five miracidia of Schistosoma mansoni originated from the same biotope as their snail hosts, were tested. Observations were carried out at outdoors, with the quantification of cercarial emergence at 3h intervals during three consecutive days in November 1989 and in May 1990. Cercarial emergence was essentially diurnal (from 06.00-18.00h) in both species. Circadian rhythms were detected by the Single Cosinor Method among 74.3% of B. tenagophila and 91.7% of B. glabrata snails. The acrophases corresponding to individual snails were between 11.37 e 17.54h in B. tenagophila and between 14.15 and 16.29h in B. glabrata. These findings confirm our preliminary observations in B. tenagophila and are in accordance to those of other authors in regard to B. glabrata. The acrophases of individual snails were similar within each species, thus indicating that at populacional level cercarial emergence was concentrated in particular times of the day. Group acrophases for each species varied from 13.22 to 15.22h and were not significantly different between B. tenagophila and B. glabrata. Cercariae emerging from B. tenagophila snails seemed to be more sensitive to environmental temperature than those emerging from B. glabrata, at least in the temperature range prevailing along the tests. Further chronobiological studies on host-parasite interactions are encouraged to improve our knowledge about temporal aspects of schistosomosis transmission.  相似文献   

17.
Biomphalaria glabrata can react through different pathways to Schistosoma mansoni miracidium penetration, according to the degree of resistance/susceptibility presented by different snail strains, which is a genetically determined character, resistance being the dominant feature. However, it has been observed that previous susceptible snail strain may change its reactive behavior along the course of infection, exhibiting later a pattern of cercarial shedding and histopatopathological picture compatible with high resistance. Such observation suggests the possibility of B. glabrata to develop a sort of adaptative immunity face a schistosome infection. To explore on this aspect, the present investigation looked for the behavior of S. mansoni infection in B. glabrata previously subjected to different means of artificial stimulation of its internal defense system. Snails previously inoculated with irradiated miracídia (Group I); treated with S. mansoni antigens (Group II) or with a non-related parasite antigen (Group III) were challenged with 20 viable S. mansoni miracidia, and later looked for cercarial shedding and histopathologic changes at different times from exposition. Nodules of hemocyte accumulations were found at the site of antigen injection. These nodules resembled solid granulomas, and were larger and more frequent in snails injected with S. mansoni products as compared to those injected with Capillaria hepatica. However, the presence of such granulomas did not avoid the S. mansoni challenge infection from developing in a similar way as that seen in controls. The data are indicative that hemocytes are able to proliferate locally when stimulated, such capacity also remaining localized, not being shared by the population of hemocytes located elsewhere within the snail body.  相似文献   

18.
Among Biomphalaria glabrata/Schistosoma mansoni snail-trematode combinations, it appears that some parasites succeed whilst others fail to infect snails. Snails that become infected are termed susceptible hosts. Those which are not infected are traditionally determined as 'resistant'. Here the concept of B. glabrata resistance to S. mansoni is re-examined in the light of additional observations. It is suggested that, in B. glabrata/S. mansoni, compatibility is tested independently for each individual miracidium and host, and that the success or failure of an infection does not depend on the snail susceptibility/resistance status, but on the 'matched' or 'mismatched' status of the host and parasite phenotypes.  相似文献   

19.
Prior exposure of Biomphalaria glabrata to the eggs of an incompatible digenean, Plagiorchis elegans, rendered this snail host less suitable to a compatible species, Schistosoma mansoni. Although P. elegans failed to develop patent infections in B. glabrata, it reduced the production of S. mansoni cercariae by 88%. Concomitantly, host attributes such as reproduction, growth, and survival were compromised. The effect of P. elegans infection was most severe among snails that, in addition, had developed patent schistosome infections. Although few S. mansoni cercariae were produced, egg production by B. glabrata was only 4% of control values. Furthermore, no doubly infected snails survived for more than 3 wk after patency, whereas controls experienced no mortality during the same time period. The above effects were attributable to the establishment and persistence of P. elegans sporocysts in the tissues of the incompatible snail host. Their indirect antagonistic interaction with thelarval stages of S. mansoni may be mediated, in part, through their long-term stimulation of the host's internal defense mechanisms. These findings are discussed with a view to use P. elegans and other plagiorchiid digeneans as agents in the biological control of snails and snail-borne diseases.  相似文献   

20.
We have previously confirmed the presence of common antigens between Schistosoma mansoni and its vector, Biomphalaria glabrata. Cross-reactive antigens may be important as possible candidates for vaccine and diagnosis of schistosomiasis. Sera from outbred mice immunized with a soluble Biomphalaria glabrata antigen (SBgA) of non-infected B. glabrata snails recognized molecules of SBgA itself and S. mansoni AWA by Western blot. Recognition of several molecules of the SBgA were inhibited by pre-incubation with AWA (16, 30, 36, 60 and 155 kDa). The only specific molecule of AWA, inhibited by SBgA, was a 120 kDa protein. In order to determine which epitopes of SBgA were glycoproteins, the antigen was treated with sodium metaperiodate and compared with non-treated antigen. Molecules of 140, 60 and 24 kDa in the SBgA appear to be glycoproteins. Possible protective effects of the SBgA were evaluated immunizing outbred mice in two different experiments using Freund's Adjuvant. In the first one (12 mice/group), we obtained a significant level of protection (46%) in the total worm load, with a high variability in worm recovery. In the second experiment (22 mice/group), no significant protection was observed, neither in worm load nor in egg production per female. Our results suggest that SBgA constitutes a rich source of candidate antigens for diagnosis and prophylactic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号