首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oral mucosa is a highly specialised, stratified epithelium that confers protection from infection and physical, chemical and thermal stimuli. The non-keratinised junctional epithelium surrounds each tooth like a collar and is easily attacked by foreign substances from the oral sulcus. We found that TRPV2, a temperature-gated channel, is highly expressed in junctional epithelial cells, but not in oral sulcular epithelial cells or oral epithelial cells. Dual or triple immunolabelling with immunocompetent cell markers also revealed TRPV2 expression in Langerhans cells and in dendritic cells and macrophages. Electron microscopy disclosed TRPV2 immunoreactivity in the unmyelinated and thinly myelinated axons within the connective tissue underlying the epithelium. TRPV2 labelling was also observed in venule endothelial cells. The electron-dense immunoreaction in junctional epithelial cells, macrophages and neural axons occurred on the plasma membrane, on invaginations of the plasma membrane and in vesicular structures. Because TRPV2 has been shown to respond to temperature, hypotonicity and mechanical stimuli, gingival cells expressing TRPV2 may act as sensor cells, detecting changes in the physical and chemical environment, and may play a role in subsequent defence mechanisms.  相似文献   

2.
The ultrastructure of Langerhans cells has not been fully investigated in diabetes-associated gingival tissues. The present study was carried out to investigate the ultrastructure of gingival Langerhans cells in alloxan-induced diabetic rats. Gingival biopsies were obtained from 22 diabetic and 18 control rats. Langerhans cells were observed by transmission electron microscopy (TEM) in the basal layers of healthy oral epithelium. On rare occasions, Langerhans cells were found in the suprabasal layers of the oral epithelium. Langerhans cells in the oral epithelium of diabetic rats were seen in the basal and suprabasal layers. Usually, Langerhans cells had clear cytoplasm and convoluted or indented nuclei and few or no specific granules. The clear cytoplasm contained mitochondria, lysosomes and a small number of rough-surfaced endoplasmic reticulum regions, but it lacked tonofilament. Occasionally, centrioles were also observed in the cytoplasm. The membrane of Langerhans cells had no junctional complexes such as desmosomes. In diabetic rats, Langerhans cell precursors were developed into specific granule-bearing cells. Both Langerhans cells and their granules were more frequent in the gingiva of diabetic rats than in the control group. These data suggest that Langerhans cells play an important role in explaining the pathogenesis and development of diabetic gingivitis.  相似文献   

3.
Summary In order to contrast anionic sites, in mouse lung alveoli, two staining procedures were applied: (a) staining with Ruthenium Red and Alcian Blue and (b) staining with Cuprolinic Blue in a critical electrolyte concentration method. The Ruthenium Red-Alcian Blue staining procedure revealed electron-dense granules in the alveolar basement membrane. The granules were closely associated with the epithelial cell membrane and continued to stain even when the procedure was carried out at a low pH, indicating the presence of sulphate groups in the granules.After staining with Cuprolinic Blue, electron-dense filaments, also closely associated with the cell membrane, became visible in the basement membrane of type I epithelial cells. Their length depended on the MgCl2 concentration used during staining. At 0.4m MgCl2, the length was mostly within the range 100–180 nm. Using a modified Cuprolinic Blue method, the appearance of the filaments closely resembled that of spread proteoglycan monomers with their side-chains condensed. The basement membrane of type II epithelial cells also contained filaments positive towards Cuprolinic Blue; their length, however, was smaller in comparison with those of type I epithelial cells. The filaments lay in one plane and provided the whole alveolus with an almost continuous sheet of anionic sites. Cuprolinic Blue staining also revealed filaments in the basement membrane of the capillary endothelial cells. Furthermore, Cuprolinic Blue-positive filaments (average length about 40 nm) became apparent in close contact with collagen fibrils and separated from each other according to the main banding period of the collagen fibrils (about 60 nm), indicating a specific ultrastructural interaction between these two components. Filaments connecting collagen fibrils with each other were also detected.  相似文献   

4.
In this study, we report the immunohistochemical localization of versican in healthy porcine gingival epithelia. The monoclonal antibody (mAb), 5D5, specifically recognizes core proteins of large chondroitin sulphate proteoglycans such as versican, neurocan and brevican, but not the core protein of aggrecan. Because neurocan and brevican appear to be specific to nervous tissue, the large chondroitin sulphate proteoglycans examined in this study is most likely versican. In the keratinized layer of the attached gingival epithelium, the basal and spinous cell surfaces showed intense staining for mAb 5D5. In the parakeratinized layer of the sulcus epithelium, the localization was restricted to the basal and lower spinous layers. In the junctional epithelium, intense staining was observed in one or two cell layers near the enamel surface. Immunoelectron microscopy revealed high-density depositions of 5D5 immunoreactivity on epithelial cell surfaces. At the enamel surface, 5D5 immunoreactivity was localized to the dental cuticle of the junctional epithelium but was not present in the internal basal lamina. These results suggest that versican, a large chondroitin sulphate proteoglycan, is involved in epithelial differentiation and downgrowth.  相似文献   

5.
Summary Rat incisors were fixed with a solution of 0.05% Cuprolinic Blue and 2.5% glutaraldehyde in the presence of various concentrations of MgCl2 according to the critical electrolyte concentration (CEC) principle. This method allows glycosaminoglycans (GAG) to be properly preserved and visualized. Small granules were stained by the cationic dye in the predentine in the absence of MgCl2. These granules grew in size and became more electron-dense when the concentration of the electrolyte was increased. Larger ribbon-like structures and granules were seen when 0.3M MgCl2 was used. In the dentine, tiny dots in close association with the surface of the collagen fibres, or their periodic striations, were positively stained. A thick electron-dense band located on the dentine side at the predentine-dentine junction was seen both with and without 0.05 M MgCl2. With higher concentrations of the electrolyte (0.1–0.3 M), this band was reduced to a very thin line located at the border of the dentine, along with mineralizing collagen fibres. This demonstrated the presence of GAG at the dentine surface and therefore indicated that GAG may play a role as nucleator agent.  相似文献   

6.
The distributions of substance P (SP) and the neurokinin-1 receptor (NK1-R), the receptor preferentially activated by SP, were examined in rat gingiva by immunocytochemical methods with light and electron microscopy. SP-immunoreactive nerve fibers were located preferentially in the junctional epithelium (JE) but few in the other oral and oral sulcular epithelia. NK1-R immunoreactivity was found in the endothelial cells (capillaries and postcapillary venules underlying the JE). NK1-R-labeled and -unlabeled unmyelinated nerve fibers were located close to the blood vessels and partially or completely covered by a Schwann cell sheath. In the JE, labeled naked axons without Schwann cell sheaths were observed. Neutrophils and macrophages in the connective tissue underlying the JE and in the JE were also labeled with NK1-R. Furthermore, NK1-R was found in the JE cells. Basically, immunoreaction products for NK1-R were found throughout various cells (endothelial cells, neutrophils, and JE cells) at invaginations of the plasma membrane and in vesicular and granular structures that are probably endosomes and are found close to both the plasma membrane and the nucleus. This is a first report, demonstrating the presence of NK1-R in the gingival tissue in the normal nonstimulated condition. Furthermore, it is thought that SP may modulate the permeability of blood vessels beneath the JE, the production of antimicrobial agents in neutrophils, and the proliferation and endocytotic ability of JE cells through NK1-R.  相似文献   

7.
Three different types of lingual papilla were observed by scanning electron microscopy on the dorsal lingual epithelium of the lizard Gekko japonicus. Dome-shaped lingual papillae were located at the apex. Flat, fan-shaped lingual papillae were seen in the widest area of the lingual body. Long, scale-like lingual papillae were arranged on the latero-posterior dorsal surface. At higher magnification, microvilli and microridges were seen to be widely distributed over the surface of the papillae. By light microscopy, the epithelium of the dome-shaped papillae was composed of single, columnar epithelial cells filled with secretory granules. The tip of the epithelium of the fan-shaped and scale-like papillae was composed of stratified squamous epithelial cells without granules. The major part of the epithelium of these two types of papilla, except the tip area, was also composed of single, columnar epithelial cells with secretory granules. By transmission electron microscopy, a nucleus without a defined shape was seen to be located in the basal part of each of the single, columnar epithelial cells. Rough-surfaced endoplasmic reticulum and Golgi apparatus were well developed around the nucleus. The other, major part of the cytoplasm was filled with the spherical secretory granules, a large number of which had very electron-dense cores and moderately electron-dense peripheral regions. In the stratified squamous epithelium, a nucleus, which tended to be condensed on the free-surface side, was located in the center of each cell. Mitochondria, endoplasmic reticulum, and vesicles were observed in the cytoplasm.  相似文献   

8.
The expression and function of thrombomodulin (TM), an endothelial cofactor protein for thrombin-mediated protein C activation, in the epithelium are not fully characterized. This report describes the distribution and localization of TM in the various types of epithelia in the rat by light and electron microscopic immunocytochemistry. TM showed a limited distribution and was expressed by the keratinizing stratified epithelia of the skin, tongue, and esophagus, but was not present on the non-keratinizing epithelia of the vagina, ureter, trachea, stomach, or gut. An identical pattern of TM expression was seen in mucocutaneous junctions, transitional zones from a non-keratinizing stratified epithelium to a keratinizing epithelium at the edge of the eyelid and in the anal canal. As the keratinization of the stratified epithelia proceeded, the staining intensity increased in the transitional zones. Within the keratinizing stratified epithelia, TM staining was limited to the keratinocytes of the spinous layer, the spinous cells. The subcellular localization of TM on the spinous cells was restricted to the plasma membrane facing the intercellular spaces. TM was not detectable on the desmosomes or the two membranes making up the junction, presumably the nexus. The functional significance of TM in keratinizing epithelia is discussed. Accepted: 14 October 1999  相似文献   

9.
The process of keratinization in apteric avian epidermis and in scutate scales of some avian species has been studied by autoradiography for histidine and immunohistochemistry for keratins and other epidermal proteins. Acidic or basic alpha-keratins are present in basal, spinosus, and transitional layers, but are not seen in the corneous layer. Keratinization-specific alpha-keratins (AE2-positive) are observed in the corneous layer of apteric epidermis but not in that of scutate scales, which contain mainly beta-keratin. Alpha-keratin bundles accumulate along the plasma membrane of transitional cells of apteric epidermis. In contrast to the situation in scutate scales, in the transitional layer and in the lowermost part of the corneous layer of apteric epidermis, filaggrin-like, loricrin-like, and transglutaminase immunoreactivities are present. The lack of isopeptide bond immunoreactivity suggests that undetectable isopeptide bonds are present in avian keratinocytes. Using immunogold ultrastructural immunocytochemistry a low but localized loricrin-like and, less, filaggrin-like labeling is seen over round-oval granules or vesicles among keratin bundles of upper spinosus and transitional keratinocytes of apteric epidermis. Filaggrin-and loricrin-labeling are absent in alpha-keratin bundles localized along the plasma membrane and in the corneous layer, formerly considered keratohyalin. Using ultrastructural autoradiography for tritiated histidine, occasional trace grains are seen among these alpha-keratin bundles. A different mechanism of redistribution of matrix and corneous cell envelope proteins probably operates in avian keratinocytes as compared to that of mammals. Keratin bundles are compacted around the lipid-core of apteric epidermis keratinocytes, which do not form complex chemico/mechanical-resistant corneous cell envelopes as in mammalian keratinocytes. These observations suggest that low amounts of matrix proteins are present among keratin bundles of avian keratinocytes and that keratohyalin granules are absent.  相似文献   

10.
Abstract

Changes in the expression of peanut lectin (PNA) were examined in keratinocytes of oral keratosis showing a mixture of hyperortho- and hyperparakeratinized epithelium. In the hyperorthokeratinized epithelium, which was reacted with anti-filaggrin antibody in both granular and cornified cells, PNA bound to the surface of keratinocytes from the spinous layer to the granular layer. Neither anti-filaggrin nor PNA reactions were detected in keratinocytes of the hyperparakeratinized epithelium. After neuraminidase pretreatment, however, PNA staining appeared in all cells, except cornified cells, of both hyperortho- and hyperparakeratinized epithelia. These findings suggest that PNA-binding epitopes in keratinocytes were modified by sialic acid during the hyperparakeratotic process of oral keratosis.  相似文献   

11.
The peroxidase-iodide (I-) system is a potential antimicrobial agent, and its bacteriocidal activity against various periodontal bacteria has been shown in many studies. The aim of this study was to investigate the possible cytotoxic effects of a non-physiological horseradish peroxidase (HRP)-I- system on human gingival keratinocytes and fibroblasts. Immortalized human skin keratinocyte cell line was used as a reference. Three indicators were studied: membrane permeability (trypan blue staining), cell growth (crystal violet staining) and metabolic activity (alamarBlue stain). The cells were cultured in microtitration plates, and the most commonly used exposure time to the HRP system was 1 h. The effects of HRP system on cell growth and metabolic activity were observed at lower I- and H2O2 concentrations than its effects on membrane permeability. Gingival fibroblasts were more prone to detachment than keratinocyte cell lines, but no differences in changes of growth or metabolic activities were observed between gingival fibroblasts and gingival keratinocytes. The highest concentrations of the HRP-I- system components which did not have any significant detrimental effects on the metabolic activity and cell growth of gingival keratinocytes and fibroblasts were: 50 microg/ml HRP, 500 micromol/L I- and 500 micromol/L H2O2. Although this system has been shown to be antibacterial against oral bacteria, no recommendations about the usage of the HRP-I- system in oral cavity can be made yet due to the in vitro nature of this study. Our results form the basis for future safety studies investigating the chronic toxicity of this system to oral epithelium.  相似文献   

12.
Eggs of the asteroid Pisaster ochraceus demonstrate cortical granules, a thick vitelline membrane, and a poorly stained jelly coat similar to that seen on the eggs of other echinoderms. When fixed in the presence of alcian blue the jelly coat is seen to be made up of three regions, an inner layer consisting of a meshwork of fibres, a middle layer of thicker fibres, and a dense outer layer. At fertilization the cortical granules release their contents into the potential space between the vitelline layers and a low fertilization membrane consisting of the vitelline layer and a dense component of the corticle granule is formed. Initially the remaining contents of the corticle granules form an amorphous hyaline layer that fills the space between the plasma membrane and the fertilization membrane. At hatching a distinct hyaline layer is present. It persists at least to the bipinnaria stage and consists of four distinct layers. A similar layer is also located over much of the early embryonic endoderm but is lost from the regions involved in the formation of the mesenchyme cells, coelom, and mouth just before these events take place. Numerous large clear vesicles are located in the apex of all cells associated with a hyaline layer. Where the hyaline layer is lacking, only scattered vesicles are present suggesting that the vesicles may be involved in maintenance of the layer. Attempts to identify elements of the hyaline layer by immunofluorescence demonstrated that it appears to bind both antisera and control sera in a nonspecific manner.  相似文献   

13.
The peritrophic membrane of Drosophila melanogaster consists of four layers, each associated with a specific region of the folded epithelial lining of the cardia. The epithelium is adapted to produce this multilaminar peritrophic membrane by bringing together several regions of foregut and midgut, each characterized by a distinctively differentiated cell type. The very thin, electron-dense inner layer of the peritrophic membrane originates adjacent to the cuticular surface of the stomadeal valve and so appears to require some contribution by the underlying foregut cells. These foregut cells are characterized by dense concentrations of glycogen, extensive arrays of smooth endoplasmic reticulum, and pleated apical plasma membranes. The second and thickest layer of the peritrophic membrane coalesces from amorphous, periodic acid-Schiff-positive material between the microvilli of midgut cells in the neck of the valve. The third layer of the peritrophic membrane is composed of fine electron-dense granules associated with the tall midgut cells of the outer cardia wall. These columnar cells are characterized by cytoplasm filled with extensive rough endoplasmic reticulum and numerous Golgi bodies and by an apical projection filled with secretory vesicles and covered by microvilli. The fourth, outer layer of the peritrophic membrane originates over the brush border of the cuboidal midgut cells, which connect the cardia with the ventriculus.  相似文献   

14.
It is well known that proinflammatory cytokines produced by host cells play an important role in periodontal tissue destruction. However, the localization of the cytokines in in vivo periodontal tissues during development of periodontal disease has not been determined. Immunohistochemical expression of proinflammatory cytokines including IL-1!, IL-1#, and TNF-! was examined at 1 and 3 h, and 1, 2, 3, and 7 days after topical application of lipopolysaccharide (LPS; 5 mg/ml in physiological saline) from E. coli into the rat molar gingival sulcus. In the normal periodontal tissues, a small number of cytokine-positive epithelial cells were seen in the junctional epithelium (JE), oral sulcular and oral gingival epithelium, in addition to macrophages infiltrating in the subjunctional epithelial area and osteoblasts lining the alveolar bone surface. Epithelial remnants of Malassez existing throughout periodontal ligament were intensely positive for IL-1# but negative for the other two cytokines. At 3 h after the LPS treatment, almost all cells in the JE were strongly positive for the cytokines examined. In addition, several cytokine-positive cells, including neutrophils, macrophages, and fibroblasts, were seen in the subjunctional epithelial connective tissue. At day 2, expression of the cytokines in the JE gradually decreased, while cytokine-positive cells in the connective tissue increased in number. Positive staining of the cytokines was seen in osteoclasts and preosteoclasts which appeared along the alveolar bone margin in this period. The number of cytokine-positive cells decreased by day 7. These findings indicate that, in addition to macrophages, neutrophils, and fibroblasts, the JE cells are a potent source of TNF-!, IL-1!, and IL-1# reacting to LPS application, and suggest that JE cells may play an important role in the first line of defense against LPS challenge, and the proinflammatory cytokines transiently produced by various host cells may be involved in the initiation of inflammation and subsequent periodontal tissue destruction.  相似文献   

15.
Tannic acid mordanting during fixation of isolated vesicles from skeletal muscle enhanced the resolution of the images. Isolated triadic junctions displayed two characteristic features not previously described: (a) a clear gap separated terminal cisternae from transverse tubules; (b) this gap was bridged by a separating array of structures which resembled the "feet" of intact muscle. When the triad was broken in a French press and subsequently reassembled by joining the two organelles, a similar gap was seen but the structure of the feet was less well defined. When the membrane of the triad was extracted by Triton X-100, the junctional region was retained and a similar gap between the two organelles could be discerned. The terminal cisternae characteristically displayed a thickening of the cytoplasmic leaflet of the membrane in select areas in which electron-dense material was apposed on the luminal leaflet. This thickened membrane was not observed in longitudinal reticulum or in terminal cisternae regions distal to the electron-dense matter. This thickened leaflet was not invariably associated with the junction, and some junctional regions did not display discernible thickening of the membrane. When the triad was treated with KCl, the electron-dense aggregate was dispersed and the thickened leaflet of the terminal cisternae dissipated, whereas the triadic junctional region with its feet remained unchanged. KCl treatment caused dissolution of three proteins of Mr = 77,000, 43,000, and 38,000. Treatment of Triton-resistant vesicles with KCl caused the loss of electron-dense aggregate but did not otherwise influence the appearance of the junction. A good degree of correlation both qualitatively and in quantitative parameters between the isolated vesicles and the intact muscle was observed.  相似文献   

16.
Using an affinity purified antibody raised against the RI-H fragment of rat intestinal lectin L-36, the latter protein has been identified within the esophageal epithelium by means of ultracryotomy followed by immunogold labeling. The epithelium consists of 4 morphologically distinct cell-types, namely, the basal, spiny, granular and squamous cells, and each of these exhibits a different immunolabeling pattern. The basal cells form a layer on the basal lamina, and in these a diffuse cytoplasmic staining is observed. This basal cell layer is overlaid by spiny cells that extend many cell processes into wide intercellular spaces. In these cells, immunogold particles are found only on small granular inclusions consisting of an electron-lucent homogeneous substance. The granular cells from a third layer over the spiny cells, and are characterized by a number of large granular inclusions with an electron-dense core rimmed by a less electron-dense substance. Immunogold labeling is found on these granules, both on the core and peripheral region. Squamous cell-types constitute the most superficial layer of the epithelium. They are without granular inclusions, and immunogold labeling is confined to the cytoplasmic surface of the thickened plasma membrane. These findings suggest that L-36 is produced in the basal cells as free cytosolic protein, then becomes progressively aggregated into the granular inclusions of the spiny and granular cells, and is eventually transferred onto the cytoplasmic surface of the squamous cell plasma membrane where it may interact with complementary glycoconjugate(s) located at this site. The membrane lining substance thus formed may play a role in stabilizing the squamous cell membranes, thereby maintaining the structural integrity of the epithelium against mechanical stress coming from the esophageal lumen.  相似文献   

17.
The epithelium of anterior midgut of adult Cenocorixa bifida was examined with light and electron microscopy. The folded epithelium is composed of tall columnar cells extending to the lumen, differentiating dark and light cells with interdigitating apices and regenerative basal cells in the nidi surrounded by villiform ridges that penetrate deeply into the epithelium. The columnar cells display microvilli at their luminal surface. Microvilli lined intercellular spaces and basal plasma membrane infoldings are associated with mitochondria. These ultrastructural features suggest their role in absorption of electrolytes and nutrients from the midgut lumen. The columnar cells contain large oval nuclei with prominent nucleoli. Their cytoplasm is rich in rough endoplasmic reticulum, Golgi complexes and electron-dense secretory granules indicating that they are also engaged in synthesis of digestive enzymes. The presence of secretory granules in close proximity of the apical plasma membrane suggests the release of secretion is by exocytosis. The presence of degenerating cells containing secretory granules at the luminal surface and the occurance of empty vesicles and cell fragments in the lumen are consistent with the holocrine secretion of digestive enzymes. Apical extrusions of columnar cells filled with fine granular material are most likely formed in response to the lack of food in the midgut. The presence of laminated concretions in the cytoplasm is indicative of storageexcretion of surplus minerals. The peritrophic membrane is absent from the midgut of C. bifida.  相似文献   

18.
P-cadherin belongs to the family of Ca2+-dependent homophilic glycosylated cell adhesion molecules. In the normal oral epithelium it shows a strong expression in the basal cell layer which gradually decreases in the suprabasal cell layers. The exact role of P-cadherin during the development and homeostasis of the oral epithelium has not been elucidated, yet. Here, we show for the first time that P-cadherin controls differentiation by regulating cytokeratin (CK) 1/10 expression in primary oral keratinocytes (POK) from normal, but interestingly not in POKs from oral squamous cell carcinoma (OSCC) tissue. SiRNA knockdown of P-cadherin in normal POKs revealed a strong upregulation of CK1/10 expression on mRNA and protein level. In contrast, E-cadherin knockdown in normal oral keratinocytes did not show any influence on CK1/10 expression. Moreover, in comparison with normal control keratinocytes normal oral keratinocytes with reduced P-cadherin expression displayed an enhanced expression and a stronger nuclear staining of C/EBP-beta, a well-known regulator of CK1/10 expression in keratinocytes. Furthermore, after P-cadherin knockdown in normal POKs the promoter activity of a C/EBP-responsive luciferase construct was significantly higher than in normal POKs with regular P-cadherin expression. Additionally, we noticed a proliferation advantage in normal oral keratinocytes in contrast to keratinocytes with diminished P-cadherin expression. However, the inverted effect was seen in tumor derived primary oral keratinocytes. In summary, we show that P-cadherin contributes to the keratinocyte differentiation in the oral epithelium by influencing the CK1 and CK10 expression via C/EBP-beta-mediated signaling in normal but not in tumor derived oral keratinocytes from OSCC patients.  相似文献   

19.
By means of transmissive and scanning electron microscopy 103 gingival bioptates in practically healthy persons at the age of 18-80 years have been studied. At ageing essential changes take place in all structural elements of the epithelium. The basal membrane is intermittent and loose. In cytoplasm of the cells of the basal layer epithelium the amount of microfilaments increases essentially, and as a result it becomes electron opaque. Tonofibrillar fasciculi of the spinous layer cells are fragmented, their contours are indistinct. In cytoplasm of the granular layer cells amount of keratohyalin granules increases, their size becomes large and their typical form is lost. In cytoplasm of the basal, spinous and granular layer cells the amount of organells decreases. Mitochondria acquire the appearance of electron translucent cavities with discomplexic, and sometimes, destroyed cristae. Rather great changes occur in intercellular interrelations. In all the layers some intercellular spaces are widen, in the spaces formed isolated desmosomes and other debries of cellular structures are formed. Sharp changes of microrelief of the granular layer epitheliocytes are observed. The ultrastructural rearrangements of epitheliocytes, revealed in the human gingiva, demonstrate certain disturbances in keratinization processes, in mechanical firmness, as well as in barrier function of the epithelial layer.  相似文献   

20.
Proteoglycans, located in the interphotoreceptor matrix (IPM) of vertebrate retinas, mediate interactions between the photoreceptors and retinal pigment epithelium. Molluscan retinas also have an IPM located between apposing rhabdomeres. Like the cone matrix sheath of the vertebrate IPM, the octopus IPM is labeled by peanut agglutinin (PNA) and contains retinoid-binding-like proteins. In this study we demonstrate further similarities of the vertebrate/invertebrate IPM and identify specific molecular components in this extracellular compartment of the octopus retina. For light microscopy, paraffin-embedded sections of octopus retinas were stained with dyes specific for acid mucopolysacharides including Alcian blue and colloidal iron. In addition, sections were digested with enzymes specific for hyaluronan, chondroitin sulfate, and sialoglycoconjugates. Digestion of sections with these enzymes and subsequent staining with Alcian blue or colloidal iron demonstrated the presence of chondroitin sulfate and sialoglycoconjugates in the octopus IPM as well as other retinal layers and cells. At the electron-microscope level we treated retinal tissue with Cuprolinic Blue and observed the distribution of sulfated glycosaminoglycans along the rhabdomere edges facing the IPM and in a more central area of the IPM where microvillous processes of supportive cells are located. The octopus IPM may have importance in retinal structure and may be a scaffolding on which molecular components of the IPM are located.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号