共查询到20条相似文献,搜索用时 0 毫秒
1.
[3H]Clonidine, a α-noradrenergic agonist, and [3H]WB-4101, a benzodioxan derivative α-antagonist, bind with high affinity and selectivity to membranes of rat brain in a fashion indicating that they label postsynaptic α-noradrenergic receptors. Binding for both ligands is saturable with KD values of 5 nM and 0.6 nM respectively for clonidine and WB-4101. The relative affinities of a series of phenylethylamines for binding sites corresponds well with their relative influences at α-receptors. Binding of both [3H]-ligands is stereoselective with about a 50 fold preference for (-)-norepinephrine. Of a series of ergot alkaloids, only those with known α-receptor activity have high affinities for the binding sites. Binding does not involve pre-synaptic norepinephrine nerve endings, because after an 80% depletion of endogenous norepinephrine by treatment with 6-hydroxydopamine, no decrease can be detected in [3H]clonidine and [3H]WB-4101 binding. α-Agonists have much higher affinities for [3H]clonidine than [3H]WB-4101 sites, while the reverse holds true for α-antagonists. Mixed agonist-antagonist ergots have similar affinities for binding of the two [3H]ligands. These data suggest that [3H]clonidine and [3H]WB-4101 respectively label distinct agonist and antagonist states of the α-receptor. 相似文献
2.
The dopamine receptor: differential binding of d-LSD and related agents to agonist and antagonist states. 总被引:8,自引:0,他引:8
Dopamine receptor binding is calf striatal membranes of 3H-dopamine and 3H-haloperidol appears to differentiate agonist and antagonist states of the receptor. Agonists and antagonists have selective affinities for dopamine and haloperidol sites respectively. In evaluating relative affinities for dopamine and haloperidol binding sites, we have observed that d-LSD interacts with considerable affinity at the dopamine receptor. Its similar competition petition for binding of the two tritiated ligands suggests that it is a mixed agonist-antagonist, which is consistent with its interactions with the dopamine-sensitive adenylate cyclase. The effects of LSD on dopamine receptor binding are stereospecific, with d-LSD being 1,000 times more potent than d-LSD. 2-Bromo-LSD has more of an antagonist profile than d-LSD for the dopamine receptor. In binding experiments methiothepin behaves like a potent and relatively pure antagonist at dopamine receptors. 相似文献
3.
Variations in incubation temperature can markedly differentiate opiate receptor binding of agonists and antagonists. In the presence of sodium increasing incubation temperatures from 0° to 30° reduces receptor binding of 3H-naloxone by 50% while tripling the binding of the agonist 3H-dihydromorphine. Lowering incubation temperature from 25° to 0° reduces the potency of morphine in inhibiting 3H-naloxone binding by 9-fold while not affecting the potency of the antagonist nalorphine. At temperatures of 25° and higher the number of binding sites for opiate antagonists is increased by sodium and the number of sites for agonists is decreased by sodium with no changes in affinity. By contrast, in the presence of sodium lowering of incubation temperature to 0° increases opiate receptor binding of the antagonist naloxone by enhancing its affinity for binding sites even though the total number of binding sites are not changed. 相似文献
4.
The specific beta-adrenergic agonist radioligand (+/-)-[3H]hydroxybenzylisoproterenol ([3H]HBI) was used to investigate alterations in the beta-adrenergic receptors of frog erythrocytes occurring during the process of agonist-induced, receptor-specific desensitization. There was close agreement between the percentage fall in [3H]HBI binding and that in catecholamine-stimulated adenylate cyclase activity following periods of preincubation of up to 7 h with 0.1 mM (-)-isoproterenol. Desensitization was maximal by 5 h, resulting in a 69% reduction in [3H]HBI binding and a 67% reduction in isoproterenol-stimulated adenylate cyclase activity. In contrast, binding of the beta-adrenergic antagonist (-)-[3H]dihydroalprenolol was significantly less affected by desensitization (p is less than 0.05 at 2 1/2, 5, and 7 h), showing a maximum reduction in binding of only 35% in these experiments. The consistent close agreement of reduction in agonist binding with that in hormone-stimulated adenylate cyclase activity, together with the significant difference observed between agonist and antagonist binding, implies that an alteration occurs during desensitization which preferentially interferes with agonist binding, while antagonist binding is less affected. The locus of this agonist-specific alteration may be the receptor binding site or a site involved in receptor-enzyme coupling. Agonist binding studies may now be used to assess more completely the desensitized state of beta-adrenergic receptors in systems in which marked desensitization of beta-adrenergic responses is associated with little or no reduction in antagonist binding. 相似文献
5.
To identify the molecular determinants of ligand-receptor interactions, the extracellular domain of the human neurokinin-1 receptor was systematically substituted with the corresponding sequences from the other two neurokinin receptor subtypes. Three residues within the first extracellular segment and 2 residues of the second segment are required for the optimal binding of all three natural peptide agonists. The divergent nature of 4 of the 5 residues supports the hypothesis that the peptide binding site on the neurokinin-1 receptor is not highly conserved in the other two receptor subtypes. In contrast, substitution of part of the third extracellular segment and the fourth extracellular segment with the corresponding amino acids of the human neurokinin-3 receptor results in an increase in neurokinin B affinity without affecting substance P binding, suggesting that the two peptides do not interact with the same set of functional groups on the receptor. Among the four extracellular regions, only parts of the third and fourth segments affect the binding of the quinuclidine antagonist L-703,606, and these two regions may partially account for the neurokinin-1 receptor subtype specificity of this non-peptide antagonist. These studies demonstrate that both the extracellular and transmembrane domains of the neurokinin-1 receptor are involved in the binding of substance P and related peptides. 相似文献
6.
By treating the rat crude synaptosomal fraction with 5,5'-dithio-bis-(2-nitrobenzoic acid), DTNB, a marked decrease of stereo-specific binding of opioid agonist (dihydromorphine or D-Ala-D-Leu-enkephalin) was observed, but there was no effect in the case of the binding of opioid antagonist (naloxone or diprenorphine). The decrease of the agonist binding in the presence of 500 microM of DTNB was nearly equal to that of 100 mM of NaCl. The ability of opioids to inhibit 3H-naloxone binding in the absence of DTNB was compared to their inhibitory potency in the presence of 500 microM of DTNB to obtain DTNB response ratio. This ratio closely correlated with sodium index of each opioid. Potency of the inactivation of the agonist binding by congeners of DTNB changed with net charge of the reagents, and 2,2'-dithiobis-(5-nitropyridine), bearing a positive charge, was most effective. These results suggest that an aliphatic sulfhydryl group, being sensitive to DTNB is located to the active center of an anionic binding site for the agonist, and controls opioid agonist binding through a proton transfer mechanism. 相似文献
7.
Binding of the radiolabeled platelet-activating-factor (PAF) receptor antagonist RP52770, [( 3H]-N-(3-chlorophenyl)-3-(3-pyridinyl)-1H, 3H-pyrrolo- [1,2-c]thiazole-7-carboxamide) to receptors in human lung membranes was time- dependent, protein-dependent, reversible and saturable. The dissociation constant and maximal binding density were 14 +/- 2 nM and 2.1 +/- 0.6 pmol/mg protein, respectively. [3H]-RP52770 binding to the PAF receptor was competitively displaced by PAF and receptor antagonists. The rank order of the binding affinities were PAF greater than RP52770 (+) greater than RP52770 (-) greater than CV3988, equivalent to the PAF receptor specificities determined from functional studies. Binding of PAF to [3H]-RP52770 labeled receptors was regulated by sodium, guanylylimido- diphosphate (GppNHp) and divalent cations. In the presence of EDTA, Na+ and GppNHp, in combination, binding of PAF to the receptor was maximally shifted to the right. These results clearly demonstrate that cations and guanine nucleotide can regulate the affinity states of the PAF receptor in human lung membranes. 相似文献
8.
Liu S Babcock MS Bode J Chang JS Fischer HD Garlick RL Gill GS Lund ET Margolis BJ Mathews WR Rogers BN Wolfe M Groppi V Baldwin ET 《Protein expression and purification》2011,79(1):102-110
Nicotinic acetylcholine receptors (nAChRs) form ligand-gated ion channels that mediate fast signal transmission at synapses. These receptors are members of a large family of pentameric ion channels that are of active medical interest. An expression system utilizing a chimerical construct of the N-terminal extracellular ligand binding domain of alpha7 type nAChR and the C-terminal transmembrane portion of 5HT3 type receptor resulted high level of expressions. Two ligand affinity chromatography purification methods for this receptor have been developed. One method relies on the covalent immobilization of a high affinity small molecule alpha7 nAChR agonist, (R)-5-(4-aminophenyl)-N-(quinuclidin-3-yl) furan-2-carboxamide, and the other uses mono biotinylated alpha-bungarotoxin, an antagonist, that forms a quasi-irreversible complex with alpha7 nAChR. Detergent solubilized alpha7/5HT(3) chimeric receptors were selectively retained on the affinity resins and could be eluted with free ligand or biotin. The proteins purified by both methods were characterized by gel electrophoresis, mass spectra, amino acid composition analysis, and N-terminal sequence determination. These analyses confirmed the isolation of a mature alpha7/5HT(3) receptor with the signal peptide removed. These results suggest a scalable path forward to generate multi-milligram amounts of purified complexes for additional studies including protein crystallization. 相似文献
9.
E.L. Moore J.J. Gingell D.L. Hay 《Biochemical and biophysical research communications》2010,394(1):141-6708
The calcitonin receptor-like receptor (CLR) associates with the accessory protein RAMP1 to form a receptor for the neuropeptide calcitonin gene-related peptide (CGRP). Multiple lines of evidence have implicated CGRP in the pathophysiology of migraine headache making the CGRP receptor an attractive target for development of small-molecule antagonists as a novel treatment for this debilitating condition. The CGRP receptor antagonists telcagepant and olcegepant (BIBN4096BS) have demonstrated clinical efficacy in the treatment of migraine and there is now a need to better understand how these molecules interact with the receptor. Previous work has shown the extracellular portion of RAMP1 to be important for binding of these antagonists, with tryptophan-74 being a key interaction site. The crystal structure of the extracellular portion of human RAMP1 placed tryptophan-74 in a hydrophobic patch hypothesized to interact with CGRP receptor ligands and also identified nearby residues that may be important for ligand binding. In this study we explored the role played by these residues of RAMP1 using an alanine replacement strategy. We confirmed a role for tryptophan-74 in antagonist binding and also identified arginine-67 as being important for binding of telcagepant but not compound 3, a close analog of BIBN4096BS. We also identified tryptophan-84 as being critical for both high-affinity binding of the non-peptide antagonists as well as the peptides CGRP and CGRP(8-37). These data for the first time pinpoint a specific RAMP1 residue important for both antagonist and agonist potency and are consistent with the N-terminal domain of RAMP1 forming the binding pocket interface with CLR. 相似文献
10.
LSD (50 μg/kg, i.v.) significantly depressed the discharge rate of dopamine-containing neurons in the substantia nigra of chloral hydrate anesthetized rats. However, when this same dose of LSD was administered to rats whose nigral cell discharge had been reduced 45% below baseline by d-amphetamine (mean dose = 1.45 mg/kg, i.v.), the discharge rate was significantly increased (typically returning to the pre-amphetamine baseline). A similar pattern was observed when LSD was administered to apomorphine-pretreated animals. Brom-LSD also produced these reversal effects. These effects of LSD resemble those of classical central dopamine antagonists such as haloperidol. We hypothesize that the shift in LSD's action from that of dopamine agonist to antagonist by prior dopamine agonist treatment may be mediated by a conformational shift in the state of the dopamine receptor. 相似文献
11.
We used the GEnSeMBLE Monte Carlo method to predict ensemble of the 20 best packings (helix rotations and tilts) based on the neutral total energy (E) from a vast number (10 trillion) of potential packings for each of the four subtypes of the adenosine G protein-coupled receptors (GPCRs), which are involved in many cytoprotective functions. We then used the DarwinDock Monte Carlo methods to predict the binding pose for the human A(3) adenosine receptor (hAA(3)R) for subtype selective agonists and antagonists. We found that all four A(3) agonists stabilize the 15th lowest conformation of apo-hAA(3)R while also binding strongly to the 1st and 3rd. In contrast the four A(3) antagonists stabilize the 2nd or 3rd lowest conformation. These results show that different ligands can stabilize different GPCR conformations, which will likely affect function, complicating the design of functionally unique ligands. Interestingly all agonists lead to a trans χ1 angle for W6.48 that experiments on other GPCRs associate with G-protein activation while all 20 apo-AA(3)R conformations have a W6.48 gauche+ χ1 angle associated experimentally with inactive GPCRs for other systems. Thus docking calculations have identified critical ligand-GPCR structures involved with activation. We found that the predicted binding site for selective agonist Cl-IB-MECA to the predicted structure of hAA(3)R shows favorable interactions to three subtype variable residues, I253(6.58), V169(EL2), and Q167(EL2), while the predicted structure for hAA(2A)R shows weakened to the corresponding amino acids: T256(6.58), E169(EL2), and L167(EL2), explaining the observed subtype selectivity. 相似文献
12.
Site-directed mutagenesis of the m3 muscarinic receptor: identification of a series of threonine and tyrosine residues involved in agonist but not antagonist binding. 下载免费PDF全文
The hydrophobic core of all muscarinic receptors contains several conserved serine, threonine and tyrosine residues, most of which do not occur in any other G-protein coupled receptor. Since these amino acids can serve as potential hydrogen bond donors or acceptors, we have tested the hypothesis that they may be involved in the selective binding of muscarinic ligands. To eliminate the OH groups present in these residues, we have created nine single point mutations in the rat m3 muscarinic receptor by converting serine and threonine residues to alanine, and tyrosine residues to phenylalanine. The ligand binding and functional properties of these receptors were studied after transient expression in COS-7 cells. Six out of the nine mutant receptors (threonine and tyrosine mutations) showed strong reductions (approximately 10- to 40-fold lower than the wild-type receptor) in agonist binding affinities and reduced potencies in agonist-induced activation of phosphoinositide hydrolysis. Their antagonist binding properties, however, were similar to those of the wild-type m3 receptor. Despite their location on different transmembrane domains (III, V, VI and VII), all six mutations are positioned at a similar level (one to two helical turns away from the membrane surface) within the outer leaflet of the plasma membrane and may thus define the plain in which muscarinic agonists (but not antagonists) bind to their target receptor. 相似文献
13.
Dopamine D1 receptor agonist and D2 receptor antagonist effects of the natural product (-)-stepholidine: molecular modeling and dynamics simulations 总被引:2,自引:0,他引:2 下载免费PDF全文
Fu W Shen J Luo X Zhu W Cheng J Yu K Briggs JM Jin G Chen K Jiang H 《Biophysical journal》2007,93(5):1431-1441
(-)-Stepholidine (SPD), an active ingredient of the Chinese herb Stephania, is the first compound found to have dual function as a dopamine receptor D1 agonist and D2 antagonist. Insights into dynamical behaviors of D1 and D2 receptors and their interaction modes with SPD are crucial in understanding the structural and functional characteristics of dopamine receptors. In this study a computational approach, integrating protein structure prediction, automated molecular docking, and molecular dynamics simulations were employed to investigate the dual action mechanism of SPD on the D1 and D2 receptors, with the eventual aim to develop new drugs for treating diseases affecting the central nervous system such as schizophrenia. The dynamics simulations revealed the surface features of the electrostatic potentials and the conformational "open-closed" process of the binding entrances of two dopamine receptors. Potential binding conformations of D1 and D2 receptors were obtained, and the D1-SPD and D2-SPD complexes were generated, which are in good agreement with most of experimental data. The D1-SPD structure shows that the K-167_EL-2-E-302_EL-3 (EL-2: extracellular loop 2; EL-3: extracellular loop 3) salt bridge plays an important role for both the conformational change of the extracellular domain and the binding of SPD. Based on our modeling and simulations, we proposed a mechanism of the dual action of SPD and a subsequent signal transduction model. Further mutagenesis and biophysical experiments are needed to test and improve our proposed dual action mechanism of SPD and signal transduction model. 相似文献
14.
Dopamine antagonist binding: a significant decrease with morphine dependence in the rat striatum 总被引:2,自引:0,他引:2
(3H)-Spiroperidol specific binding was determined in striatal tissue of rats which received a single dose of, or made dependent on morphine. Acute morphine (30 mg/kg i.p.) did not alter (3H)-spiroperidol specific binding. However, morphine-dependent rats with two 50 mg pellets when withdrawn for 24 or 48 hours, significantly decreased the binding and increased Kd. Binding sites were reduced with a decrease in Kd in rats implanted with four-50 mg pellets or receiving high doses of morphine. These results indicate that binding characteristics of (3H)-spiroperidol depend on the relative dose of morphine used to induce dependence. Low dose dependence (2 pellets) results in a decrease in binding affinity while high dose dependence (4 pellets or chronic injection) results in an increase of (3H)-spiroperidol affinity in the presence of fewer binding sites. 相似文献
15.
Glycosylation affects agonist binding and signal transduction of the rat somatostatin receptor subtype 3. 总被引:1,自引:0,他引:1
The somatostatin receptor subtypes, sst1-sst5, bind their natural ligands, somatostatin-14, somatostatin-28 and cortistatin-17, with high affinity but do not much discriminate between them. Detailed understanding of the interactions between these receptors and their peptide ligands may facilitate the development of selective compounds which are needed to identify the biological functions of individual receptor subtypes. The influence of the amino-terminal domain and of the two putative N-linked glycosylation sites located in this region of rat sst3 was analysed. Biochemical studies in transfected cell lines suggested that the amino-terminus of sst3 is glycosylated at both sites. Mutation of the N-linked glycosylation site, Asn18Thr, had only a small effect on binding properties and inhibition of adenylyl cyclase. The double mutant Asn18Thr/Asn31Thr lacking both glycosylation sites showed a significant reduction in high affinity binding and inhibition of adenylyl cyclase while peptide selectivity was not affected. Truncation of the amino-terminal region by 32 amino acid residues including the two glycosylation sites caused similar but much stronger effects. Immunocytochemical analysis of receptor localisation revealed that the amino-terminal domain but not the carbohydrates appear to be involved in the transport of the receptor polypeptide to the cell surface. 相似文献
16.
Kaichi Y Nonaka R Hagino Y Watanabe M 《Canadian journal of physiology and pharmacology》2000,78(1):7-11
Because the dopamine D3 receptor is primarily expressed in regions of the limbic system of brain, it was proposed that it may represent a target for antipsychotic drugs that is free of extrapyramidal side effects. An ex vivo receptor binding technique employing [3H]7-OH-DPAT was used to evaluate in vivo occupancy of dopamine D3 receptors in the rat nucleus accumbens by selective D3 agonist 7-OH-DPAT (7-hydroxy-dipropylaminotetralin) and various antipsychotic drugs. With an ID50 value of 0.07 mg/kg, the selective D3 agonist (+)-7-OH-DPAT had the most potent inhibitory effect on ex vivo binding of [3H]7-OH-DPAT among all drugs tested. Clinical doses of phenothiazine drugs, such as chlorpromazine and levomepromazine, induce binding to D3 receptors in vivo, while atypical antipsychotic drugs, such as clozapine, pimozide, and sulpiride, are very weak in inhibiting ex vivo binding of [3H]7-OH-DPAT, indicating that the role of D3 receptors as targets of antipsychotic drugs free of extrapyramidal side effects may not be important. 相似文献
17.
Zhirong Chen Shifen Dong Fancui Meng Yaoyue Liang Shuofeng Zhang 《Molecular simulation》2018,44(4):322-329
The human bitter taste receptors (TAS2Rs) belong to the GPCR family, while the activation mechanism and how TAS2Rs recognise bitter ligands are poorly understood. In this study, 3D structure of TAS2R16 was constructed using homology modelling complemented with molecular dynamics method. Salicin and probenecid were docked to TAS2R16 receptor to investigate the possible activation mechanism of TAS2R16. The results show that salicin and probenecid locate at the binding pocket made up of transmembrane helices TM3, TM5 and TM7, and the second and third extracellular loops ECL2 and ECL3. Structural analysis reveals that the network interactions at the third intracellular loop ICL3 may play a crucial role in stabilising the inactive state of TAS2R16, and structural change in the intracellular region is correlated with the activation of TAS2R16. The binding energies of salicin and probenecid to TAS2R16 are ?152.81 ± 15.09 and ?271.90 ± 26.97 kJ/mol, respectively, indicating that a potential antagonist should have obviously stronger binding affinity. 相似文献
18.
The binding sites of 5-HT3 and other Cys-loop receptors have been extensively studied, but there are no data on the entry and exit routes of ligands for these sites. Here we have used molecular dynamics simulations to predict the pathway for agonists and antagonists exiting from the 5-HT3 receptor binding site. The data suggest that the unbinding pathway follows a tunnel at the interface of two subunits, which is approximately 8 A long and terminates approximately 20 A above the membrane. The exit routes for an agonist (5-HT) and an antagonist (granisetron) were similar, with trajectories toward the membrane and outward from the ligand binding site. 5-HT appears to form many hydrogen bonds with residues in the unbinding pathway, and experiments show that mutating these residues significantly affects function. The location of the pathway is also supported by docking studies of granisetron, which show a potential binding site for granisetron on the unbinding route. We propose that leaving the binding pocket along this tunnel places the ligands close to the membrane and prevents their immediate reentry into the binding pocket. We anticipate similar exit pathways for other members of the Cys-loop receptor family. 相似文献
19.
《Life sciences》1995,57(15):1401-1410
PD 128907 [4a R, 10 b R-(+)-trans- 3, 4, 4a, 10 b - tetrahydro - 4- n-propy12 H,5H-[1] benzopyrano[4,3-b]1,4-oxazin-9-ol.], a selective dopamine (DA) D3 receptor agonist ligand exhibits about a 1000-fold selectivity for human D3 receptors (Ki, 1 nM) versus human D2 receptors (Ki, 1183 nM) and a 10000-fold selectivity versus human D4 receptors (Ki, 7000 nM) using [3H]spiperone as the radioligand in CHO-K1-cells. Studies with [3H]PD 128907, showed saturable, high affinity binding to human D3 receptors expressed in CHO-K1 cells (CHO-K1-D3) with an equilibrium dissociation constant (Kd) of 0.99 nM and a binding density (Bmax) of 475 fmol/mg protein. Under the same conditions, there was no significant specific binding in CHO-K1-cells expressing human D2 receptors (CHO-K1-D2). The rank order of potency for inhibition of [3H]PD 128907 binding with reference DA agents was consistent with reported values for D3 receptors. These results indicate that [3H]PD 128907 is a new, highly selective D3 receptor ligand with high specific activity, high specific binding and low non-specific binding and therefore should be useful for further characterizing the DA D3 receptors. 相似文献
20.
Sascha H?velmann Silke H Hoffmann Ronald Kühne Ton ter Laak Helmut Reil?nder Thomas Beckers 《Biochemistry》2002,41(4):1129-1136
To investigate the impact of aromatic residues within transmembrane helix 6 (TMH6) of the human gonadotropin-releasing hormone receptor (GnRH-R) on agonist and antagonist binding, residues Y(283), Y(284), W(289), Y(290), W(291), and F(292) were exchanged to alanine and analyzed comprehensively in functional reporter gene and ligand binding assays. Whereas receptor mutants Y(283)A, Y(284)A, and W(291)A were capable of neither ligand binding nor signal transduction, mutants W(289)A, Y(290)A, and F(292)A were functional: the F(292)A mutant behaved like wild-type receptor, while mutants W(289)A and Y(290)A differentiated between agonistic and antagonistic ligands. On the basis of the high-resolution X-ray structure of bovine rhodopsin as well as available data on GnRH-R mutants, models for ligand-receptor interactions are proposed. The model for D-Trp(6)-GnRH (Triptorelin) binding, representing a superagonistic ligand, is in full accordance to available data. Furthermore, new interactions are proposed: pGlu(1) interacts with N(212) in transmembrane helix 5, Tyr(5) with Y(290), and D-Trp(6) with W(289). The binding behavior of mutants W(289)A and Y(290)A corresponds to the proposed binding model for the antagonist Cetrorelix. In summary, our data as presented indicate that Y(290) plays a key function in agonist but not antagonist binding. 相似文献