共查询到20条相似文献,搜索用时 15 毫秒
1.
Tauber MM Cavaco-Paulo A Robra K Gübitz GM 《Applied and environmental microbiology》2000,66(4):1634-1638
Rhodococcus rhodochrous NCIMB 11216 produced nitrile hydratase (320 nkat mg of protein(-1)) and amidase activity (38.4 nkat mg of protein(-1)) when grown on a medium containing propionitrile. These enzymes were able to hydrolyze nitrile groups of both granular polyacrylonitriles (PAN) and acrylic fibers. Nitrile groups of PAN40 (molecular mass, 40 kDa) and PAN190 (molecular mass, 190 kDa) were converted into the corresponding carbonic acids to 1.8 and 1.0%, respectively. In contrast, surfacial nitrile groups of acrylic fibers were only converted to the corresponding amides. X-ray photoelectron spectroscopy analysis showed that 16% of the surfacial nitrile groups were hydrolyzed by the R. rhodochrous enzymes. Due to the enzymatic modification, the acrylic fibers became more hydrophilic and thus, adsorption of dyes was enhanced. This was indicated by a 15% increase in the staining level (K/S value) for C. I. Basic Blue 9. 相似文献
2.
Purification and characterization of an amidase from an acrylamide-degrading Rhodococcus sp. 总被引:2,自引:0,他引:2 下载免费PDF全文
M S Nawaz A A Khan J E Seng J E Leakey P H Siitonen C E Cerniglia 《Applied microbiology》1994,60(9):3343-3348
A constitutively expressed aliphatic amidase from a Rhodococcus sp. catalyzing acrylamide deamination was purified to electrophoretic homogeneity. The molecular weight of the native enzyme was estimated to be 360,000. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified preparation yielded a homogeneous protein band having an apparent molecular weight of about 44,500. The amidase had pH and temperature optima of 8.5 and 40 degrees C, respectively, and its isoelectric point was pH 4.0. The amidase had apparent K(m) values of 1.2, 2.6, 3.0, 2.7, and 5.0 mM for acrylamide, acetamide, butyramide, propionamide, and isobutyramide, respectively. Inductively coupled plasma-atomic emission spectometry analysis indicated that the enzyme contains 8 mol of iron per mol of the native enzyme. No labile sulfide was detected. The amidase activity was enhanced by, but not dependent on Fe(2+), Ba(2+), and Cr(2+). However, the enzyme activity was partially inhibited by Mg(2+) and totally inhibited in the presence of Ni(2+), Hg(2+), Cu(2+), Co(2+), specific iron chelators, and thiol blocking reagents. The NH2-terminal sequence of the first 18 amino acids displayed 88% homology to the aliphatic amidase of Brevibacterium sp. strain R312. 相似文献
3.
The amidase gene from Rhodococcus rhodochrous M18 was cloned by PCR amplification with primers developed by use of peptide amino acid sequences obtained after treating amidase with trypsin. Nucleotide sequence analysis of this gene revealed high homology with aliphatic amidases from R. erythropolis R312 and Pseudomonas aeruginosa. Considering the substrate specificity and the results of DNA analysis, amidase from R. rhodochrous M8 was assigned to the group of aliphatic amidases preferentially hydrolyzing short-chain aliphatic amides. The amidase gene was expressed in cells of Escherichia coli from the self promoter and from the lac promoter. To clone a fragment of R. rhodochrous M8 chromosome (approximately 9 kb), containing the entire structural gene and its flanking regions, plasmid pRY1 that can be integrated into the chromosome via homology regions was used. No sequences of the nitrile hydratase gene, the second key gene of nitrile degradation in strain R. rhodochrous M8, were detected. Thus, genes encoding amidase and nitrile hydratase in strain R. rhodochrous M8 are not organized into a single operon despite their common regulation. 相似文献
4.
L. E. Ryabchenko D. A. Podchernyaev E. K. Kotlova A. S. Yanenko 《Russian Journal of Genetics》2006,42(8):886-892
The amidase gene from Rhodococcus rhodochrous M8 was cloned by PCR amplification with primers developed by use of peptide amino acid sequences obtained after treating amidase with trypsin. Nucleotide sequence analysis of this gene revealed high homology with aliphatic amidases from R. erythropolis R312 and Pseudomonas aeruginosa. Considering the substrate specificity and the results of DNA analysis, amidase from R. rhodochrous M8 was assigned to the group of aliphatic amidases preferentially hydrolyzing short-chain aliphatic amides. The amidase gene was expressed in cells of Escherichia coli from the self promoter and from the lac promoter. To clone a fragment of R. rhodochrous M8 chromosome (approximately 9 kb), containing the entire structural gene and its flanking regions, plasmid pRY1 that can be integrated into the chromosome via homology regions was used. No sequences of the nitrile hydratase gene, the second key gene of nitrile degradation in strain R. rhodochrous M8, were detected. Thus, genes encoding amidase and nitrile hydratase in strain R. rhodochrous M8 are not organized into a single operon despite their common regulation. 相似文献
5.
Gorbunova A. N. Maksimova Yu. G. Ovechkina G. V. Maksimov A. Yu. 《Applied Biochemistry and Microbiology》2015,51(5):539-545
Applied Biochemistry and Microbiology - The amidase of Rhodococcus rhodochrous 4-1 was immobilized by covalent attachment to activated chitosan by physical sorption on carbon adsorbents and by the... 相似文献
6.
H. De Wever S. De Cort I. Noots H. Verachtert 《Applied microbiology and biotechnology》1997,47(4):458-461
2-Hydroxybenzothiazole (OBT) is present in wastewaters from the industrial production of the rubber vulcanization accelerator
2-mercaptobenzothiazole (MBT). We have achieved the first isolation of axenic bacterial cultures capable of the degradation
of OBT and growth on this substrate as the sole source of carbon, nitrogen and energy. All isolates had similar characteristics
corresponding to one particular isolate, which was studied in more detail and identified as Rhodococcus rhodochrous. The strains were also capable of degrading benzothiazole (BT) but not MBT or benzothiazole-2-sulphonate (BTSO3). OBT was degraded at a concentration of up to 600 mg · l−1. BT was toxic above 300 mg · l−1. MBT inhibited OBT degradation. Growth on OBT was not significantly different at pH values of between 6.3 and 7.9 or salt
concentrations between 1 % and 3 %. In shake flasks the cells clumped together, which resulted in a lower rate of oxygen transfer
and slower degradation as compared to cells grown on OBT in a stirred reactor.
Received: 22 August 1996 / Received revision: 29 November 1996 / Accepted: 29 November 1996 相似文献
7.
Nitrilase was purified from an extract of isovaleronitrile-induced cells of Rhodococcus rhodochrous J1 in seven steps. In the last step, the enzyme was crystallized by adding ammonium sulfate. The crystallized enzyme appeared to be homogeneous by polyacrylamide electrophoresis, ampholyte electrofocusing and double immunodiffusion in agarose. The enzyme has a molecular mass of about 78 kDa and consists of two subunits identical in molecular mass. The purified enzyme exhibits a pH optimum of 7.6 and a temperature optimum of 45 degrees C. The enzyme catalyzed stoichiometrically the hydrolysis of benzonitrile to benzoic acid and ammonia, and no formation of amide was detected. The enzyme required thiol compounds such as dithiothreitol, L-cysteine or reduced glutathione to exhibit maximum activity. The enzyme was specific for nitrile groups attached to an aromatic or heteroaromatic ring, e.g. benzonitrile, 3-chlorobenzonitrile, 4-tolunitrile, 2-furonitrile and 2-thiophenecarbonitrile. The comparison of the properties of the enzyme with other nitrilases and nitrile hydratases has been also discussed. 相似文献
8.
Spectroscopic characterization of a newly isolated cytochrome P450 from Rhodococcus rhodochrous. 下载免费PDF全文
Cytochrome P450 (P450) from Rhodococcus rhodochrous have been characterized through circular dichroism and nuclear magnetic resonance (NMR) spectroscopy, both in the substrate-free and substrate-bound forms. The data are compared with those of P450cam and indicate a close similarity of the structure of the active site in the two proteins. The substrate-free species contains low-spin iron(III), while the 2-ethoxyphenol bound species contains high-spin iron(III). The substrate is in slow exchange on the NMR time scale. The binding of CN- has been investigated and the final adduct characterized through NMR spectra. Nuclear relaxation times of the isotropically shifted signals turn out to be shorter than in other heme proteins, both in the high- and in the low-spin species. This is the result of longer electron relaxation times in P450s than in peroxidases and metmyoglobin. This property, as well as the electron paramagnetic resonance (EPR) spectrum of the substrate-free form, are discussed in terms of the presence of the cysteine as the fifth ligand of the iron ion instead of a histidine as it occurs in peroxidases and myoglobin. 相似文献
9.
Anna N. Kulakova Karen A. Reid Michael J. Larkin Christopher C.R. Allen Leonid A. Kulakov 《FEMS microbiology letters》1996,145(2):227-231
Abstract Rhodococcus rhodochrous NCIMB 13064 can dehalogenate and utilise a number of halogenated aliphatic compounds as sole carbon and energy source. Mutants of NCIMB13064 can be easily isolated with an enlarged range of 1-chloroalkane utilising ability. Dehalogenation of 1-chlorononane, 1-chlorodecane and short-chain 1-chloroalkanes (C3 -C8 ) is encoded by the same plasmid pRTL1. However, a different genetic element(s) is required for the dehalogenation of 3-chloropropionic acid. Two derivatives (P200 and P400) of R. rhodochrous NCIMB 13064 were isolated which had acquired the ability to utilise naphthalene as sole carbon and energy source. Both strains lost the ability to utilise short-chain 1-chloroalkanes and underwent some rearrangements associated with pRTLl plasmid. 相似文献
10.
Cloning and characterization of an amidase gene from Rhodococcus species N-774 and its expression in Escherichia coli 总被引:3,自引:0,他引:3
Y Hashimoto M Nishiyama O Ikehata S Horinouchi T Beppu 《Biochimica et biophysica acta》1991,1088(2):225-233
For investigation of an unknown open reading frame which is present upstream of the nitrile hydratase (NHase) gene from Rhodococcus sp. N-774, a longer DNA fragment covering the entire gene was cloned in Escherichia coli. Nucleotide sequencing and detailed subcloning experiments predicted a single open reading frame consisting of 521 amino acid residues of Mr 54,671. The amino acid sequence, especially its NH2-terminal portion, showed significant homology with those of indoleacetamide hydrolases from Pseudomonas savastanoi and Agrobacterium tumefaciens, and acetamidase from Aspergillus nidulans. The 521-amino acid coding region was therefore expressed by use of the E. coli lac promoter in E. coli, and was found to direct a considerable amidase activity. This amidase hydrolyzed propionamide efficiently, and also hydrolyzed, at a lower efficiency, acetamide, acrylamide and indoleacetamide. These data clearly show that the unknown open reading frame present upstream of the NHase coding region encodes an amidase. Because the TAG translational stop codon of the amidase is located only 75 base pairs apart from the ATG start codon of the alpha-subunit of NHase, these genes are probably translated in a polycistronic manner. 相似文献
11.
Suraj Dhungana Ryszard Michalczyk Hakim Boukhalfa Joseph G. Lack Andrew T. Koppisch Jason M. Fairlee Mitchell T. Johnson Christy E. Ruggiero Seth G. John Matthew M. Cox Cindy C. Browder Jennifer H. Forsythe Laura A. Vanderberg Mary P. Neu Larry E. Hersman 《Biometals》2007,20(6):853-867
The siderophore produced by Rhodococcus rhodochrous strain OFS, rhodobactin, was isolated from iron-deficient cultures and purified by a combination of XAD-7 absorptive/partition
resin column and semi-preparative HPLC. The siderophore structure was characterized using 1D and 2D 1H, 13C and 15N NMR techniques (DQFCOSY, TOCSY, NOESY, HSQC and LR-HSQC) and was confirmed using ESI-MS and MS/MS experiments. The structural
characterization revealed that the siderophore, rhodobactin, is a mixed ligand hexadentate siderophore with two catecholate
and one hydroxamate moieties for iron chelation. We further investigated the effects of Fe concentrations on siderophore production
and found that Fe limiting conditions (Fe concentrations from 0.1 μM to 2.0 μM) facilitated siderophore excretion. Our interests
lie in the role that siderophores may have in binding metals at mixed contamination sites (containing metals/radionuclides
and organics). Given the broad metabolic capacity of this microbe and its Fe scavenging ability, R. rhodochrous OFS may have a competitive advantage over other organisms employed in bioremediation.
Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
12.
13.
Rhodococcus rhodochrous was grown in the presence of oneof three plasticizers: bis 2-ethylhexyl adipate (BEHA), dioctyl phthalate (DOP) ordioctyl terephthalate (DOTP). None of the plasticizers were degraded unless anothercarbon source, such as hexadecane, was also present. When R. rhodochrous was grownwith hexadecane as a co-substrate, BEHA was completely degraded and the DOP was degraded slightly. About half of the DOTP was degraded, if hexadecane were present.In all of these growth studies, the toxicity of the media, which was assessed usingthe Microtox assay, increased as the organism degraded the plasticizer. In each case, therewas an accumulation of one or two intermediates in the growth medium as the toxicityincreased. One of these was identified as 2-ethylhexanoic acid and it was observed forall three plasticizers. Its concentration increased until degradation of the plasticizershad stopped and it was always present at the end of the fermentation. The other intermediatewas identified as 2-ethylhexanol and this was only observed forgrowth in the presence of BEHA. The alcohol was observed early in the growth studies with BEHA and haddisappeared by the end of the experiment. Both the 2-ethylhexanol and 2-ethylhexanoicacid were shown to be toxic and their presence explained the increase of toxicity asthe fermentations proceeded. The appearance of these intermediates was consistent with similar degradation mechanisms for all three plasticizers involving hydrolysisof the ester bonds followed by oxidation of the released alcohol. 相似文献
14.
I P Solyanikova E L Golovlev O V Lisnyak L A Golovleva 《Biochemistry. Biokhimii?a》1999,64(7):824-831
Catechol 1,2-dioxygenases of the ordinary ortho-cleavage pathway have been isolated from strains Rhodococcus rhodnii 135 and Rhodococcus rhodochrous 89 grown on phenol as the sole source of carbon and energy. The activities of the catechol 1,2-dioxygenases with 3- and 4-methylpyrocatechols were 1.3-1.5 times higher than those with pyrocatechol. The rate of oxidation of 3-chloropyrocatechol catalyzed by both enzymes was 20% of the rate of oxidation of unsubstituted pyrocatechol. The enzymes are homodimers composed of 37-kD subunits. 相似文献
15.
Abstract A Gram-positive bacterium with the ability to utilize o -toluidine as sole source of carbon and nitrogen was isolated from soil. The organism was identified as Rhodococcus rhodochrous Sb 4. 3-Methylcatechol and the meta-fission product of 3-methylcatechol were identified as metabolites. A pathway for the degradation of o -toluidine is proposed. 相似文献
16.
NAD+-linked primary and secondary alcohol dehydrogenase activity was detected in cell-free extracts of propane-grown Rhodococcus rhodochrous PNKb1. One enzyme was purified to homogeneity using a two-step procedure involving DEAE-cellulose and NAD-agarose chromatography and this exhibited both primary and secondary NAD+-linked alcohol dehydrogenase activity. The Mr of the enzyme was approximately 86,000 with subunits of Mr 42,000. The enzyme exhibited broad substrate specificity, oxidizing a range of short-chain primary and secondary alcohols (C2–C8) and representative cyclic and aromatic alcohols. The pH optimum was 10. At pH 6.5, in the presence of NADH, the enzyme catalysed the reduction of ketones to alcohols. The K
m values for propan-1-ol, propan-2-ol and NAD were 12 mM, 18 mM and 0.057 mM respectively. The enzyme was inhibited by metal-complexing agents and iodoacetate. The properties of this enzyme were compared with similar enzymes in the current literature, and were found to be significantly different from those thus far described. It is likely that this enzyme plays a major role in the assimilation of propane by R. rhodochrous PNKb1.Abbreviations HPLC
high performance liquid chromatography
- DEAE
diethyl amino ethyl
- IEF
isoelectrofocusing
- NTG
nitrosoguanidine
- SDS-PAGE
sodium dodecylsulphate polyacrylamide gel electrophoresis
- pI
isoelectric point 相似文献
17.
Cloning and heterologous expression of an enantioselective amidase from Rhodococcus erythropolis strain MP50 总被引:1,自引:0,他引:1
The gene for an enantioselective amidase was cloned from Rhodococcus erythropolis MP50, which utilizes various aromatic nitriles via a nitrile hydratase/amidase system as nitrogen sources. The gene encoded a protein of 525 amino acids which corresponded to a protein with a molecular mass of 55.5 kDa. The deduced complete amino acid sequence showed homology to other enantioselective amidases from different bacterial genera. The nucleotide sequence approximately 2.5 kb upstream and downstream of the amidase gene was determined, but no indications for a structural coupling of the amidase gene with the genes for a nitrile hydratase were found. The amidase gene was carried by an approximately 40-kb circular plasmid in R. erythropolis MP50. The amidase was heterologously expressed in Escherichia coli and shown to hydrolyze 2-phenylpropionamide, alpha-chlorophenylacetamide, and alpha-methoxyphenylacetamide with high enantioselectivity; mandeloamide and 2-methyl-3-phenylpropionamide were also converted, but only with reduced enantioselectivity. The recombinant E. coli strain which synthesized the amidase gene was shown to grow with organic amides as nitrogen sources. A comparison of the amidase activities observed with whole cells or cell extracts of the recombinant E. coli strain suggested that the transport of the amides into the cells becomes the rate-limiting step for amide hydrolysis in recombinant E. coli strains. 相似文献
18.
Fazlurrahman M. Batra J. Pandey C.R. Suri R.K. Jain 《Letters in applied microbiology》2009,49(6):721-729
Aims: The aim of this study is to isolate and characterize organisms capable of utilizing high concentration atrazine from the contaminated sites.
Methods and Results: A selective enrichment was used for isolating atrazine-degrading organisms from the contaminated sites resulting in isolation of an efficient atrazine-degrading organism designated as strain MB-P1. On the basis of 16S rRNA gene sequencing, total cellular fatty acid analysis and physiological and biochemical tests, strain MB-P1 was identified as a member of genus Rhodococcus . High performance liquid chromatography was performed to identify the atrazine degradation intermediates demonstrating that the degradation proceeds via formation of 'de-ethylatrazine' and 'de-isopropylatrazine'. Further, plasmid curing by SDS method showed atrazine-degrading gene(s) to be plasmid-encoded.
Conclusions: We have successfully isolated a Rhodococcus sp. strain MB-P1 which is capable of utilizing atrazine as sole source of carbon and energy at very high concentrations of 1000 ppm. The pathway for degradation of atrazine has also been determined. The metabolic gene(s) responsible for atrazine degradation was found to be plasmid-encoded.
Significance and Impact of the Study: Rhodococcus sp. strain MB-P1 could be used as an ideal model system for in-situ degradation and restoration of ecological niches which are heavily contaminated with atrazine. 相似文献
Methods and Results: A selective enrichment was used for isolating atrazine-degrading organisms from the contaminated sites resulting in isolation of an efficient atrazine-degrading organism designated as strain MB-P1. On the basis of 16S rRNA gene sequencing, total cellular fatty acid analysis and physiological and biochemical tests, strain MB-P1 was identified as a member of genus Rhodococcus . High performance liquid chromatography was performed to identify the atrazine degradation intermediates demonstrating that the degradation proceeds via formation of 'de-ethylatrazine' and 'de-isopropylatrazine'. Further, plasmid curing by SDS method showed atrazine-degrading gene(s) to be plasmid-encoded.
Conclusions: We have successfully isolated a Rhodococcus sp. strain MB-P1 which is capable of utilizing atrazine as sole source of carbon and energy at very high concentrations of 1000 ppm. The pathway for degradation of atrazine has also been determined. The metabolic gene(s) responsible for atrazine degradation was found to be plasmid-encoded.
Significance and Impact of the Study: Rhodococcus sp. strain MB-P1 could be used as an ideal model system for in-situ degradation and restoration of ecological niches which are heavily contaminated with atrazine. 相似文献
19.
Nicolas Haroune Bruno Combourieu Pascale Besse Martine Sancelme Achim Kloepfer Thorsten Reemtsma Heleen De Wever Anne-Marie Delort 《Applied microbiology》2004,70(10):6315-6319
2-Mercaptobenzothiazole, which is mainly used in the rubber industry as a vulcanization accelerator, is very toxic and is considered to be recalcitrant. We show here for the first time that it can be biotransformed and partially mineralized by a pure-culture bacterial strain of Rhodococcus rhodochrous. Three metabolites, among four detected, were identified. 相似文献
20.
We studied the ability of a soil bacterium, identified as Rhodococcus rhodochrous, to grow on acetylene and to accumulate acetaldehyde. Its maximum growth rate on acetylene was obtained at about 30 degrees C (mu = 0.11 h-1) and was independent of the concentration of this gas in air from 0.14 to 16% (v/v). During growth, acetylene was quantitatively transformed to acetaldehyde, ethanol, acetate, CO2, and biomass in proportions which varied with culture age and temperature. Growth was completely inhibited by acetaldehyde at a concentration of 10 mM. The inhibitory effect was relieved by addition of acetate. Growth on ethanol up to 140 mM did not result in acetaldehyde accumulation. Acetylene consumption was constitutive with apparent Km and Vmax equal to 250 microM and 800 nmol.min-1.(mg protein)-1, respectively. In resting cell suspensions, acetylene consumption rates decreased more rapidly under air than under nitrogen. The inhibitory effect of acetaldehyde was enhanced in the presence of oxygen. Acetaldehyde accumulation in aerobic resting cell conditions did not exceed 10 mM (440 mg/L), but under anaerobic conditions it attained more than 70 mM (3.08 g/L). 相似文献