首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cytochrome b on the assembly of the subunits of complex III into the inner mitochondrial membrane has been studied in four mutants of yeast that lack a spectrally detectable cytochrome b and do not synthesize apocytochrome b. Quantitative analysis of intact mitochondria by immunoprecipitation or immunoblotting techniques with specific antisera revealed that the core proteins and the iron-sulfur protein were decreased 50% or more in the mitochondria from the mutants as compared to the wild type. Sonication of wild-type mitochondria did not result in any decrease in any of these proteins from the membrane; however, sonication of mitochondria from the four mutants resulted in a further decrease in the amount of these proteins suggesting that they are not as tightly bound to the mitochondrial membrane in the absence of cytochrome b. By contrast, the amounts of cytochrome c1 in the mitochondria, as determined both spectroscopically and immunologically, were not significantly affected by the absence of cytochrome b. In addition, no loss of cytochrome c1 was observed after sonication of the mitochondria suggesting that this protein is tightly bound to the membrane. These results suggest that the processing and/or assembly of these subunits of complex III into the mitochondrial membrane is affected by the absence of cytochrome b.  相似文献   

2.
A strain of yeast lacking the gene for the Rieske iron-sulfur protein (RIP) of the cytochrome b-c1 complex was used to study the assembly of this complex in the mitochondrial membrane. This strain lacks the mRNA for the iron-sulfur protein as evidenced by both Northern hybridization using a probe containing the coding region of the gene plus in vitro translation of total RNA followed by immunoprecipitation with a specific antibody against the iron-sulfur protein. In addition, isolated mitochondria from this strain lacked cytochrome c reductase activity with either succinate or the decyl analog of ubiquinol as substrate. Immunoblotting studies with antiserum against the cytochrome b-c1 complex revealed that mitochondria from the iron-sulfur protein-deficient strain have levels of core protein I, core protein II, and cytochrome c1 equal to those of wild-type mitochondria; however, a decrease in cytochrome b was evident from both immunoblotting and spectral analysis. Moreover, it is evident from the immunoprecipitates of radiolabeled mitochondria that the amounts of the low-molecular-weight subunits (17, 14, and 11 kDa) are decreased 53, 65, and 50%, respectively, in mitochondria lacking the iron-sulfur protein. These results suggest that the iron-sulfur protein is required for the complete assembly of the low-molecular-weight subunits into the cytochrome b-c1 complex.  相似文献   

3.
The assembly of the iron-sulfur protein into the cytochrome bc1 complex after import and processing of the precursor form into mitochondria in vitro was investigated by immunoprecipitation of the radiolabeled iron-sulfur protein from detergent-solubilized mitochondria with specific antisera. After import in vitro, the labeled mature form of the iron-sulfur protein was immunoprecipitated by antisera against both the iron-sulfur protein and the entire bc1 complex from mitochondria solubilized with either Triton X-100 or dodecyl maltoside. After sodium dodecyl sulfate solubilization of mitochondria, however, the antiserum against the iron-sulfur protein, but not that against the bc1 complex, immunoprecipitated the radiolabeled iron-sulfur protein. These results suggest that in mitochondria the mature form of the iron-sulfur protein is assembled with other subunits of the bc1 complex that are recognized by the antiserum against the bc1 complex. By contrast, the intermediate and precursor forms of the iron-sulfur protein that accumulated in the matrix when proteolytic processing was blocked with EDTA and o-phenanthroline were not efficiently assembled into the bc1 complex. The import and processing of the iron-sulfur protein also occurred in mitochondria lacking either cytochrome b (W-267) or the iron-sulfur protein (JPJ1). The mature form of the iron-sulfur protein was immunoprecipitated by antisera against the bc1 complex or core protein I after import in vitro into these mitochondria, suggesting that the mature form is associated with other subunits of the bc1 complex in these strains.  相似文献   

4.
The presence of several proteins of complex III of the respiratory chain has been demonstrated in mitochondria from a mutant of Saccharomyces cerevisiae lacking 5-aminolevulinic acid synthase and, hence, devoid of heme. The two 'core' proteins, apocytochrome b and the iron-sulfur protein, were observed in equal amounts in the heme-deficient and heme-sufficient cells with antiserum against complex III and the sensitive immuno-transfer technique. In addition, three other bands were detected with the complex III antiserum in the mitochondria from the cells lacking heme. One of these has a molecular weight similar to that reported for a precursor form of cytochrome c1. By contrast, when mitochondria from the heme-deficient cells were solubilized with mild detergents and treated with the complex III antiserum, almost no immunoprecipitation was obtained above that obtained with control serum. The presence of only one major labeled band with a molecular weight similar to subunit I was observed after gel electrophoresis. These results suggest that heme may be necessary for proper processing of the apoprotein of cytochrome c1 and for the assembly into the membrane of the subunits of complex III, rather than for the synthesis of the proteins.  相似文献   

5.
We have used site-directed mutagenesis of the Saccharomyces cerevisiae Rieske iron-sulfur protein gene (RIP 1) to convert cysteines 159, 164, 178, and 180 to serines, and to convert histidines 161 and 181 to arginines. These 4 cysteines and 2 histidines are conserved in all Rieske proteins sequenced to date, and 4 of these 6 residues are thought to ligate the iron-sulfur cluster to the apoprotein. We have also converted histidine 184 to arginine. This histidine is conserved only in respiring organisms. The site-directed mutations of the six fully conserved putative iron-sulfur cluster ligands result in an inactive iron-sulfur protein, lacking iron-sulfur cluster, and failure of the yeast to grow on nonfermentable carbon sources. In contrast, when histidine 184 is replaced by arginine, the iron-sulfur cluster is assembled properly and the yeast grow on nonfermentable carbon sources. The site-directed mutations of the 6 fully conserved residues do not prevent post-translational import of iron-sulfur protein precursor into mitochondria, nor do the mutations prevent processing of iron-sulfur protein precursor to mature size protein by mitochondrial proteases. Optical spectra of mitochondria from the six mutants indicate that cytochrome b is normal, in contrast to the deranged spectrum of cytochrome b which results when the iron-sulfur protein gene is deleted. In addition, mature size iron-sulfur apoprotein is associated with cytochrome bc1 complex purified from a site-directed mutant in which iron-sulfur cluster is not inserted. These results indicate that mature size iron-sulfur apoprotein, lacking iron-sulfur cluster, is inserted into the cytochrome bc1 complex, where it interacts with and preserves the optical properties of cytochrome b. Insertion of the iron-sulfur cluster is not an obligatory prerequisite to processing of the protein to its final size. Either the processing protease cannot distinguish between iron-sulfur protein with or without the iron-sulfur cluster, or insertion of the iron-sulfur cluster occurs after the protein is processed to its mature size, possibly after it is assembled in the cytochrome bc1 complex.  相似文献   

6.
Several inner membrane proteins from rat liver mitochondria have been translated for the first time in rabbit reticulocyte lysates. These include the Rieske iron-sulfur protein, cytochrome c1 and core protein I of the cytochrome bc1 complex, the alpha and beta subunits of F1 ATPase, and subunit IV of cytochrome oxidase. All were translated from free polysomes as larger-molecular-mass precursors, and were processed to their mature forms by isolated liver mitochondria or by the isolated mitochondrial matrix fraction. In vitro processing, catalyzed by the isolated matrix fraction, is inhibited by rhodamine 6G. The latter is a fluorescent probe, which accumulates specifically in mitochondria of whole cells and which is used extensively to visualize mitochondrial morphology. The concentration of rhodamine 6G required for inhibition in vitro is similar to that of o-phenanthroline. Rhodamine 6G inhibits matrix-catalyzed processing of all precursors tested, indicating that the mechanism of inhibition is common for a variety of functionally unrelated precursors. The novel action of rhodamine 6G reported here can form the basis for its inhibition of precursor processing in intact hepatoma cells [Kolarov, J. & Nelson, B.D. (1984) Eur. J. Biochem. 144, 387-392].  相似文献   

7.
The import of cytochrome b2 and cytochrome c peroxidase into mitochondria was investigated by pulse-chase experiments with intact yeast cells combined with subcellular fractionation. Import and processing of the precursors of these intermembrane space proteins is blocked by uncouplers of oxidative phosphorylation, indicating that an "energized" inner membrane is required. Cytochrome b2 is processed in two steps. The first step involves energy-dependent transport across both mitochondrial membranes and cleavage by a matrix-located protease to yield an intermediate which is smaller than the precursor, but larger than the mature protein. The second step involves conversion of the intermediate to the mature form. Whereas the precursor and the mature form are soluble, the intermediate is membrane-bound and exposed to the intermembrane space. The maturation of cytochrome c peroxidase is much slower than that of cytochrome b2. Proteolytic processing rather than import is rate-limiting since cytochrome c peroxidase precursor labeled during a 3-min pulse is already found attached to the outer face of the mitochondrial inner membrane. Import of cytochrome b2 and probably also of cytochrome c peroxidase thus involves energy-dependent transport to the matrix and cleavage by a matrix-localized protease. Maturation of cytochrome b2 proceeds in the sequence: soluble precursor leads to membrane-bound intermediate form leads to soluble mature form.  相似文献   

8.
《The Journal of cell biology》1989,109(4):1421-1428
Passage of precursor proteins through translocation contact sites of mitochondria was investigated by studying the import of a fusion protein consisting of the NH2-terminal 167 amino acids of yeast cytochrome b2 precursor and the complete mouse dihydrofolate reductase. Isolated mitochondria of Neurospora crassa readily imported the fusion protein. In the presence of methotrexate import was halted and a stable intermediate spanning both mitochondrial membranes at translocation contact sites accumulated. The complete dihydrofolate reductase moiety in this intermediate was external to the outer membrane, and the 136 amino acid residues of the cytochrome b2 moiety remaining after cleavage by the matrix processing peptidase spanned both outer and inner membranes. Removal of methotrexate led to import of the intermediate retained at the contact site into the matrix. Thus unfolding at the surface of the outer mitochondrial membrane is a prerequisite for passage through translocation contact sites. The membrane-spanning intermediate was used to estimate the number of translocation sites. Saturation was reached at 70 pmol intermediate per milligram of mitochondrial protein. This amount of translocation intermediates was calculated to occupy approximately 1% of the total surface of the outer membrane. The morphometrically determined area of close contact between outer and inner membranes corresponded to approximately 7% of the total outer membrane surface. Accumulation of the intermediate inhibited the import of other precursor proteins suggesting that different precursor proteins are using common translocation contact sites. We conclude that the machinery for protein translocation into mitochondria is present at contact sites in limited number.  相似文献   

9.
The sequence and organization of the Chlamydomonas reinhardtii genes encoding cytochrome c(1) ( Cyc1) and the Rieske-type iron-sulfur protein ( Isp), two key nucleus-encoded subunits of the mitochondrial cytochrome bc(1) complex, are presented. Southern hybridization analysis indicates that both Cyc1 and Isp are present as single-copy genes in C. reinhardtii. The Cyc1 gene spans 6404 bp and contains six introns, ranging from 178 to 1134 bp in size. The Isp gene spans 1238 bp and contains four smaller introns, ranging in length from 83 to 167 bp. In both genes, the intron/exon junctions follow the GT/AG rule. Internal conserved sequences were identified in only some of the introns in the Cyc1 gene. The levels of expression of Isp and Cyc1 genes are comparable in wild-type C. reinhardtii cells and in a mutant strain carrying a deletion in the mitochondrial gene for cytochrome b (dum-1). Nevertheless, no accumulation of the nucleus-encoded cytochrome c(1) or of core proteins I and II was observed in the membranes of the respiratory mutant. These data show that, in the green alga C. reinhardtii, the subunits of the cytochrome bc(1) complex fail to assemble properly in the absence of cytochrome b.  相似文献   

10.
11.
By detergent-exchange chromatography using a phenyl-Sepharose CL-4B column, Complex III of the respiratory chain of beef heart mitochondria was efficiently resolved into five fractions that were rich in the iron-sulfur protein, ubiquinone-binding protein, core proteins, cytochrome c1, and cytochrome b, respectively. Complex III was initially bound to the phenyl-Sepharose column equilibrated with buffer containing 0.25% deoxycholate and 0.2 M NaCl. An iron-sulfur protein fraction was first eluted from the column with buffer containing 1% deoxycholate and no salt after removal of phospholipids from the complex by washing with the buffer for the column equilibration, as reported previously (Y. Shimomura, M. Nishikimi, and T. Ozawa, 1984, J. Biol. Chem. 259, 14059-14063). Subsequently, a fraction containing the ubiquinone-binding protein and another containing two core proteins were eluted with buffers containing 1.5 and 3 M guanidine, respectively. A fraction containing cytochrome c1 was then eluted with buffer containing 1% dodecyl octaethylene glycol monoether. Finally, a cytochrome b-rich fraction was eluted with buffer containing 2% sodium dodecyl sulfate. The fractions of the iron-sulfur protein and ubiquinone-binding protein were further purified by gel chromatography on a Sephacryl S-200 superfine column, and the cytochrome c1 fraction was further purified by ion-exchange chromatography on a DEAE-Sepharose CL-6B column; each of the three purified proteins was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

12.
To investigate the relationship between post-translational processing of the Rieske iron-sulfur protein of Saccharomyces cerevisiae and its assembly into the mitochondrial cytochrome bc1 complex we used iron-sulfur proteins in which the presequences had been changed by site-directed mutagenesis of the cloned iron-sulfur protein gene, so that the recognition sites for the matrix processing peptidase or the mitochondrial intermediate peptidase (MIP) had been destroyed. When yeast strain JPJ1, in which the gene for the iron-sulfur protein is deleted, was transformed with these constructs on a single copy expression vector, mitochondrial membranes and bc1 complexes isolated from these strains accumulated intermediate length iron-sulfur proteins in vivo. The cytochrome bc1 complex activities of these membranes and bc1 complexes indicate that intermediate iron-sulfur protein (i-ISP) has full activity when compared with that of mature sized iron-sulfur protein (m-ISP). Therefore the iron-sulfur cluster must have been inserted before processing of i-ISP to m-ISP by MIP. When iron-sulfur protein is imported into mitochondria in vitro, i-ISP interacts with components of the bc1 complex before it is processed to m-ISP. These results establish that the iron-sulfur cluster is inserted into the apoprotein before MIP cleaves off the second part of the presequence and that this second processing step takes place after i-ISP has been assembled into the bc1 complex.  相似文献   

13.
Mitochondria are responsible for the synthesis of both iron-sulfur clusters and heme, but the potential connection between the two major iron-consuming pathways is unknown. Here, we have shown that mutants in the yeast mitochondrial iron-sulfur cluster (ISC) assembly machinery displayed reduced cytochrome levels and diminished activity of the heme-containing cytochrome c oxidase, in addition to iron-sulfur protein defects. In contrast, mutants in components of the mitochondrial ISC export machinery, which are specifically required for maturation of cytosolic iron-sulfur proteins, were not decreased in heme synthesis or cytochrome levels. Heme synthesis does not involve the function of mitochondrial ISC components, because immunological depletion of various ISC proteins from mitochondrial extracts did not affect the formation and amounts of heme. The heme synthesis defects of ISC mutants were found in vivo in isolated mitochondria and in mitochondrial detergent extracts and were confined to an inhibition of ferrochelatase, the enzyme catalyzing the insertion of iron into protoporphyrin IX. In support of these findings, immunopurification of ferrochelatase from ISC mutants restored its activity to wild-type levels. We conclude that the reversible inhibition of ferrochelatase is the molecular reason for the heme deficiency in ISC assembly mutants. This inhibitory mechanism may be used for regulation of iron distribution between the two iron-consuming processes.  相似文献   

14.
Mitochondrial protein import   总被引:60,自引:0,他引:60  
Most mitochondrial proteins are synthesized as precursor proteins on cytosolic polysomes and are subsequently imported into mitochondria. Many precursors carry amino-terminal presequences which contain information for their targeting to mitochondria. In several cases, targeting and sorting information is also contained in non-amino-terminal portions of the precursor protein. Nucleoside triphosphates are required to keep precursors in an import-competent (unfolded) conformation. The precursors bind to specific receptor proteins on the mitochondrial surface and interact with a general insertion protein (GIP) in the outer membrane. The initial interaction of the precursor with the inner membrane requires the mitochondrial membrane potential (delta psi) and occurs at contact sites between outer and inner membranes. Completion of translocation into the inner membrane or matrix is independent of delta psi. The presequences are cleaved off by the processing peptidase in the mitochondrial matrix. In several cases, a second proteolytic processing event is performed in either the matrix or in the intermembrane space. Other modifications can occur such as the addition of prosthetic groups (e.g., heme or Fe/S clusters). Some precursors of proteins of the intermembrane space or the outer surface of the inner membrane are retranslocated from the matrix space across the inner membrane to their functional destination ('conservative sorting'). Finally, many proteins are assembled in multi-subunit complexes. Exceptions to this general import pathway are known. Precursors of outer membrane proteins are transported directly into the outer membrane in a receptor-dependent manner. The precursor of cytochrome c is directly translocated across the outer membrane and thereby reaches the intermembrane space. In addition to the general sequence of events which occurs during mitochondrial protein import, current research focuses on the molecules themselves that are involved in these processes.  相似文献   

15.
The mitochondrial proteins involved in adrenocortical steroidogenesis are synthesized as higher molecular weight precursors which require processing by the mitochondria to their mature sizes. The post-translational maturation of two of these proteins has been examined: the cholesterol side chain cleavage cytochrome P-450 (P-450scc) and the iron-sulfur protein, adrenodoxin. Total translation products synthesized in a cell-free system programmed by bovine adrenocortical poly(A+) RNA were incubated with isolated bovine adrenocortical or heart mitochondria followed by immunoisolation of radiolabeled P-450scc or adrenodoxin. In the presence of adrenocortical mitochondria, the precursor form of P-450scc was converted into a trypsin-resistant form that had the same molecular weight as mature P-450scc. Unlike adrenocortical mitochondria, heart mitochondria were unable to process the P-450scc precursor which remained unaltered and trypsin-sensitive. In addition, a matrix fraction of heart mitochondria did not cleave the P-450scc precursor. In contrast, the adrenodoxin precursor did not exhibit similar specificity as it was processed to the mature form by both adrenocortical and heart mitochondria. Also, the adrenocortical mitochondria were not restricted to processing endogenous proteins as they imported and cleaved the precursor to ornithine transcarbamylase. The results indicate that some mitochondrial precursor proteins have tertiary structures which allow them to be recognized by all mitochondria while other mitochondrial precursor proteins have structures recognizable by only specialized mitochondria.  相似文献   

16.
Resolution and reconstitution has been used to examine the involvement of the iron-sulfur protein of the cytochrome b-c1 segment in electron transfer reactions in this region of the mitochondrial respiratory chain. The iron-sulfur protein is required for electron transfer from succinate and from ubiquinol to cytochrome c1. It is not required for reduction of cytochrome b under these conditions, but it is required for oxidation of cytochrome b by cytochrome c plus cytochrome c oxidase. Removal of the iron-sulfur protein from the b-c1 complex prevents reduction of both cytochromes b and c1 by succinate or ubiquinol if antimycin is added to the depleted complex. As increasing amounts of iron-sulfur protein are reconstituted to the depleted complex, the amounts of cytochromes b and c1 reduced by succinate in the presence of antimycin increase and closely parallel the amounts of ubiquinol-cytochrome c reductase activity restored to the reconstituted complex, measured before addition of antimycin. The function of the iron-sulfur protein in these oxidation-reduction reactions is consistent with a cyclic pathway of electron transfer through the cytochrome b-c1 complex, in which the iron-sulfur protein functions as a ubiquinol-cytochrome c1/ubisemiquinone-cytochrome b oxidoreductase.  相似文献   

17.
The reduction of duroquinone (DQ) and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB) by NADH and ethanol was investigated in intact yeast mitochondria with good respiratory control ratios. In these mitochondria, exogenous NADH is oxidized by the NADH dehydrogenase localized on the outer surface of the inner membrane, whereas the NADH produced by ethanol oxidation in the mitochondrial matrix is oxidized by the NADH dehydrogenase localized on the inner surface of the inner membrane. The reduction of DQ by ethanol was inhibited 86% by myxothiazol; however, the reduction of DQ by NADH was inhibited 18% by myxothiazol, suggesting that protein-protein interactions between the internal (but not the external) NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase (the cytochrome bc1 complex) are involved in the reduction of DQ by NADH. The reduction of DQ and DB by NADH and ethanol was also investigated in mutants of yeast lacking cytochrome b, the iron-sulfur protein, and ubiquinone. The reduction of both quinone analogues by exogenous NADH was reduced to levels that were 10 to 20% of those observed in wild-type mitochondria; however, the rate of their reduction by ethanol in the mutants was equal to or greater than that observed in the wild-type mitochondria. Furthermore, the reduction of DQ in the cytochrome b and iron-sulfur protein lacking mitochondria was myxothiazol sensitive, suggesting that neither of these proteins is an essential binding site for myxothiazol. The mitochondria from the three mutants also contained significant amounts of antimycin- and myxothiazol-insensitive NADH:cytochrome c reductase activity, but had no detectable succinate:cytochrome c reductase activity. These results suggest that the mutants lacking a functional cytochrome bc1 complex have adapted to oxidize NADH.  相似文献   

18.
Complex III immunoprecipitated from yeast cells labeled in vivo with [35S]sulfate or [3H]leucine contained seven subunits with molecular weights ranging from 15,000 to 47,000 when analyzed by electrophoresis on polyacrylamide gels. The subunit composition of the immunoprecipitates was identical with that of the purified complex III isolated from bakers' yeast suggesting that the antiserum recognizes the holoenzyme assembled properly in the membrane (Sidhu, A., and Beattie, D.S. (1982) J. Biol. Chem. 257, 7879-7886). Kinetic studies using double-labeled yeast cells followed by immunoprecipitation of complex III indicated that the subunits of the complex are assembled into the holoenzyme at very different rates. Cytochromes b and c1 and the 15,000-dalton subunit were the first polypeptides to be assembled into the complex with a half-time of labeling of 2.0-2.4 min. Core protein I and the iron-sulfur protein were inserted more slowly into the complex with a half-time of labeling of 4.6 and 5.3 min, respectively. Calculations of precursor pool sizes of the subunits indicated that for both core protein I and the iron-sulfur protein, there are large pools of precursors. The iron-sulfur protein was synthesized in vivo as a larger precursor polypeptide of molecular mass 28,000 Da. The precursor was subsequently cleaved, in a process requiring an energized mitochondrial inner membrane, into an intermediate form 1,500 Da larger than the mature subunit. The conversion of the intermediate to the mature form occurred in the inner mitochondrial membrane.  相似文献   

19.
The Rieske iron-sulfur protein of the cytochrome bc1 complex is synthesized in the cytosol as a precursor with an additional 30 amino acids at the amino terminus. After import into the mitochondrial matrix, the precursor is processed to the mature form by two distinct proteolytic cleavages. Addition of 2.5 mM EDTA and 0.5 mM o-phenanthroline to the incubation mixture during import of the iron-sulfur protein precursor in vitro resulted in the selective inhibition of the second processing step with the concomitant accumulation of the intermediate form. The intermediate form was chased to the mature form in the presence of antimycin and oligomycin (to block the formation of a membrane potential) provided that 0.5 nM ATP and a metal ion such as Ca2+, Mn2+, or Mg2+ were added. Ca2+ ion was the most effective and at a concentration of 2.5 mM resulted in the complete cleavage of the intermediate to the mature form. Addition of Zn2+, Co2+, Mo2+, and Fe2+ was not effective in restoring the second cleavage. The pH optimum for the processing of the intermediate form of the iron-sulfur protein to the mature form was between 6.8-8.0. Processing of the intermediate form of the iron-sulfur protein to the mature form was observed at temperatures ranging from 12 to 27 degrees C in a temperature-dependent manner. The time course during the chase indicated that the second processing step was completed within 2 min after addition of Ca2+ ions. Attempts to isolate the second processing enzyme by sonication of mitochondria or by solubilization with detergents such as digitonin, Triton X-100, dodecyl-maltoside, or octyl-glucoside were unsuccessful as only the first cleavage was observed. Hence, the second processing enzyme may be present in the inner membrane or matrix in a conformation disrupted by detergents or alternatively the enzyme may be very labile.  相似文献   

20.
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号