首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of a NAD kinase-glutamate dehydrogenase complex was studied, using three independent methods. It was found that the polymeric form of glutamate dehydrogenase is involved in the formation of a complex with NAD kinase. Both the oligomeric and monomeric (subunit) forms of NAD kinase were shown to possess the ability to form complexes with glutamate dehydrogenase.  相似文献   

2.
An electrophoretically homogeneous preparation of the NAD kinase activating factor was isolated from rabbit liver and its physico-chemical properties were investigated. The similarity of molecular weights of the activator subunit and hexamer, pI values, the number of SH-groups to the corresponding parameters for glutamate dehydrogenase and the glutamate dehydrogenase activity demonstrated by this factor allowed for the identification of the NAD kinase activating factor as glutamate dehydrogenase. Using three independent methods, the formation of the NAD kinase--glutamate dehydrogenase complex was shown. Both the oligomeric and monomeric (subunit) forms of NAD kinase were found to be able to form complexes with glutamate dehydrogenase.  相似文献   

3.
Integral membrane-associated arginine-specific mono-ADP-ribosyltransferase was purified from rabbit skeletal muscle microsomes. The ADP-ribosyltransferase was solubilized from the 100,000 x g pellet with 0.3% sodium deoxycholate and purified to greater than or equal to 95% homogeneity by successive DE52, concanavalin A-agarose, 3-aminobenzamide-agarose, and size-exclusion high-performance liquid chromatography (HPLC) steps in the presence of detergents. Two molecular weight forms of the enzyme were isolated and partially characterized. The apparent Mr of the alpha-form of the enzyme purified to greater than or equal to 95% homogeneity was approximately 39,000 +/- 500 as estimated by silver-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Mr of the beta-form purified to greater than or equal to 80% homogeneity was 38,500 +/- 500. The rapid procedure resulted in a 200-fold purification for the alpha-form and a 645-fold purification for the beta-form, relative to the microsomal fraction. Positive identification of the enzyme was confirmed by utilizing a zymographic in situ gel assay and by HPLC assay of polyacrylamide gel slice incubations with an NAD and guanylhydrazone substrate. The specificity of the mono-ADP-ribosyltransferase zymographic assay was characterized by time course incubations, hydroxylamine sensitivity, 3-aminobenzamide inhibition, and histone dependence. The ADP-ribosyltransferase is inactivated by reducing agents.  相似文献   

4.
1. The binding of Ca2+ ions to purified pig heart NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase, freed of contaminating Ca2+ by parvalbumin/polyacrylamide chromatography, has been studied by flow dialysis and by the use of fura-2. 2. For the 2-oxoglutarate dehydrogenase complex, 3.5 mol of Ca2+-binding sites/mol of complex were apparent, with an apparent dissociation constant (Kd value) for Ca2+ of 2.0 microM. These values were little affected by Mg2+ ions, ADP or 2-oxoglutarate. 3. By contrast, binding of Ca2+ to NAD+-isocitrate dehydrogenase (Kd = 14 microM) required ADP, isocitrate and Mg2+ ions. The number of Ca2+-binding sites associated with NAD+-isocitrate dehydrogenase was then 0.9 mol/mol of tetrameric enzyme. 4. The 2-oxoglutarate dehydrogenase complex bound ADP (as ADP3-) to a group of tight-binding sites (Kd = 3.1 microM) with a stoichiometry, 3.3 mol/mol of complex, similar to that for the binding of Ca2+; a variable number of much weaker sites (Kd = 100 microM) for ADP3- was also apparent.  相似文献   

5.
S-Adenosylmethionine synthetase exists in at least two distinct forms, alpha- and beta-forms, in adult liver. The beta-form was purified to homogeneity from the soluble fraction of rat liver with a yield of about 10%. An antiserum directed against the purified beta-form from rat liver was prepared by injecting the purified enzyme into a rabbit. Ouchterlony double diffusion analysis and immunochemical titrations revealed that the isozymes, alpha- and beta-forms, are identical. Thus, the alpha-form was isolated from rat liver as a single protein using immunoaffinity chromatography against the beta-form. The molecular weights of the beta- and alpha-forms were determined to be 48,000 each by sodium dodecyl sulfate disc gel electrophoresis, and about 100,000, and 200,000, respectively, by Sephacryl S-200 gel filtration. These results indicate that the beta-form consisted of two subunits of 48,000 daltons and the alpha-form of four subunits of 48,000 daltons. The sedimentation coefficient was calculated to be 5.5S for the beta-form and 8.0S for the alpha-form.  相似文献   

6.
The alpha- and beta-forms of S-adenosylmethionine synthetase in rat liver were completely fractionated by chromatography on a hydrophobic resin, phenyl-Sepharose. The alpha-form was eluted in low-ionic strength buffer, and the beta-form was eluted with 50% dimethylsulfoxide. The alpha-form is less sensitive to dimethylsulfoxide, whereas the beta-form is strikingly stimulated by dimethylsulfoxide, after removal of the dimethylsulfoxide. The levels of the alpha-form activity in rat liver after treatment with ethionine and adenine for 2 consecutive days, and those of the beta-form activity in mouse liver on the 12th day after transplantation of Ehrlich ascites tumor cells, were increased several fold compared to normal liver. Immunochemical titrations with specific antibody against the beta-form as well as kinetic studies indicated that the observed increase in the levels of each activity from the S-adenosylmethionine synthetase isozymes is due to an increase in the cellular content of the enzyme.  相似文献   

7.
Glutamate dehydrogenase (L-glutamate:NAD(P)+ oxidoreductase, deaminating, EC 1.4.1.3.) of the extreme thermophilic archaebacterium Sulfolobus solfataricus was purified to homogeneity by (NH4)2SO4 fractionation, anion-exchange chromatography and affinity chromatography on 5'-AMP-Sepharose. The purified native enzyme had a Mr of about 270,000 and was shown to be a hexamer of subunit Mr of 44,000. It was active from 30 to 95 degrees C, with a maximum activity at 85 degrees C. No significant loss of enzyme activity could be detected, either after incubation of the purified enzyme at 90 degrees C for 60 min, or in the presence of 4 M urea or 0.1% SDS. The enzyme was catalytically active with both NADH and NADPH as coenzyme and was specific for 2-oxoglutarate and L-glutamate as substrates. With respect to coenzyme utilization the Sulfolobus solfataricus glutamate dehydrogenase resembled more closely the equivalent enzymes from eukaryotic organisms than those from eubacteria.  相似文献   

8.
Starting from 6-chloropurine riboside and NAD+, different reactive analogues of NAD+ have been obtained by introducing diazoniumaryl or aromatic imidoester groups via flexible spacers into the nonfunctional adenine moiety of the coenzyme. The analogues react with different amino-acid residues of dehydrogenases and form stable amidine or azobridges, respectively. After the formation of a ternary complex by the coenzyme, the enzyme and a pseudosubstrate, the reactive spacer is anchored in the vicinity of the active site. Thus, the coenzyme remains covalently attached to the protein even after decomposition of the complex. On addition of substrates the covalently bound coenzyme is converted to the dihydro-form. In enzymatic tests the modified dehydrogenases show 80-90% of the specific activity of the native enzymes, but they need remarkably higher concentrations of free NAD+ to achieve these values. The dihydro-coenzymes can be reoxidized by oxidizing agents like phenazine methosulfate or by a second enzyme system. Various systems for coenzyme regeneration were investigated; the modified enzymes were lactate dehydrogenase from pig heart and alcohol dehydrogenase from horse liver; the auxiliary enzymes were alcohol dehydrogenase from yeast and liver, lactate dehydrogenase from pig heart, glutamate dehydrogenase and alanine dehydrogenase. Lactate dehydrogenase from heart muscle is inhibited by pyruvate. With alanine dehydrogenase as the auxiliary enzyme, the coenzyme is regenerated and the reaction product, pyruvate, is removed. This system succeeds to convert lactate quantitatively to L-alanine. The thermostability of the binary enzyme systems indicates an interaction of covalently bound coenzymes with both dehydrogenases; both binding sites seem to compete for the coenzyme. The comparison of dehydrogenases with different degrees of modifications shows that product formation mainly depends on the amount of incorporated coenzyme.  相似文献   

9.
Inactive NADP-malate dehydrogenase (disulfide form) from chloroplasts of Zea mays is activated by reduced thioredoxin while the active enzyme (dithiol form) is inactivated by incubation with oxidized thioredoxin. This reductive activation of NADP-malate dehydrogenase is inhibited by over 95% in the presence of NADP and the Kd for this interaction of NADP with the inactive enzyme is about 3 microM. Other substrates of the enzyme (malate, oxaloacetate, or NADPH) do not effect the rate of enzyme activation but NADPH can reverse the inhibitory effect of NADP. It appears that NADPH (Kd = 250 microM) and NADP (Kd = 3 microM) compete for the same site, presumably the coenzyme-binding site at the active centre. Apparently the enzyme . NADP binary complex cannot be reduced by thioredoxin whereas the enzyme . NADPH complex is reduced at the same rate as is the free enzyme. Similarly the oxidative inactivation of reduced NADP-malate dehydrogenase is inhibited by up to 85% by NADP and NADPH completely reverses this inhibition. The Kd values of the active-reduced enzyme for NADP and NADPH were both estimated to be 30 microM. From these data a model was constructed which predicts how changing NADPH/NADP levels in the chloroplast might change the steady-state level of NADP-malate dehydrogenase activity. The model indicates that at any fixed ratio of reduced to oxidized thioredoxin high proportions of active NADP-malate dehydrogenase and, hence, high rates of oxaloacetate reduction, can only occur with very high NADPH/NADP ratios.  相似文献   

10.
1. A method was devised for preparing pig heart pyruvate dehydrogenase free of thiamin pyrophosphate (TPP), permitting studies of the binding of [35S]TPP to pyruvate dehydrogenase and pyruvate dehydrogenase phosphate. The Kd of TPP for pyruvate dehydrogenase was in the range 6.2-8.2 muM, whereas that for pyruvate dehydrogenase phosphate was approximately 15 muM; both forms of the complex contained about the same total number of binding sites (500 pmol/unit of enzyme). EDTA completely inhibited binding of TPP; sodium pyrophosphate, adenylyl imidodiphosphate and GTP, which are inhibitors (competitive with TPP) of the overall pyruvate dehydrogenase reaction, did not appreciably affect TPP binding. 2. Initial-velocity patterns of the overall pyruvate dehydrogenase reaction obtained with varying TPP, CoA and NAD+ concentrations at a fixed pyruvate concentration were consistent with a sequential three-site Ping Pong mechanism; in the presence of oxaloacetate and citrate synthase to remove acetyl-CoA (an inhibitor of the overall reaction) the values of Km for NAD+ and CoA were 53+/- 5 muM and 1.9+/-0.2 muM respectively. Initial-velocity patterns observed with varying TPP concentrations at various fixed concentrations of pyruvate were indicative of either a compulsory order of addition of substrates to form a ternary complex (pyruvate-Enz-TPP) or a random-sequence mechanism in which interconversion of ternary intermediates is rate-limiting; values of Km for pyruvate and TPP were 25+/-4 muM and 50+/-10 nM respectively. The Kia-TPP (the dissociation constant for Enz-TPP complex calculated from kinetic plots) was close to the value of Kd-TPP (determined by direct binding studies). 3. Inhibition of the overall pyruvate dehydrogenase reaction by pyrophosphate was mixed non-competitive versus pyruvate and competitive versus TPP; however, pyrophosphate did not alter the calculated value for Kia-TPP, consistent with the lack of effect of pyrophosphate on the Kd for TPP. 4. Pyruvate dehydrogenase catalysed a TPP-dependent production of 14CO2 from [1-14C]pyruvate in the absence of NAD+ and CoA at approximately 0.35% of the overall reaction rate; this was substantially inhibited by phosphorylation of the enzyme both in the presence and absence of acetaldehyde (which stimulates the rate of 14CO2 production two- or three-fold). 5. Pyruvate dehydrogenase catalysed a partial back-reaction in the presence of TPP, acetyl-CoA and NADH. The Km for TPP was 4.1+/-0.5 muM. The partial back-reaction was stimulated by acetaldehyde, inhibited by pyrophosphate and abolished by phosphorylation. 6. Formation of enzyme-bound [14C]acetylhydrolipoate from [3-14C]pyruvate but not from [1-14C]acetyl-CoA was inhibited by phosphorylation. Phosphorylation also substantially inhibited the transfer of [14C]acetyl groups from enzyme-bound [14C]acetylhydrolipoate to TPP in the presence of NADH. 7...  相似文献   

11.
The synthesis of nitroxide spin-labeled derivatives of S-acetoacetyl-CoA, S-acetoacetylpantetheine, and S-acetoacetylcysteamine is described. These compounds are active substrates of L-3-hydroxyacyl-CoA dehydrogenase [(S)-3-hydroxyacyl-CoA:NAD+ oxidoreductase, EC 1.1.1.35] exhibiting vmax values from 20% to 70% of S-acetoacetyl-CoA itself. S-Acetoacetylpantetheine and S-acetoacetylcysteamine form binary complexes with the enzyme and exhibit ESR spectra typical for immobilized nitroxides. In the case of spin-labeled pantetheine, the radical is more mobile. When spin-labeled substrates are bound simultaneously to each active site of this dimeric enzyme, spin-spin interactions differentiate between two alternate orientations of the substrate [Birktoft, J.J., Holden, H.M., Hamlin, R., Xuong, N.H., & Banaszak, L.J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8262-8266]. The fatty acid moiety is thought to be located in a cleft between two domains whereas a large part of the CoA moiety probably extends into the solution. NAD+, spin-labeled at N6 of the adenine ring, is an active coenzyme of L-3-hydroxyacyl-CoA dehydrogenase (60% vmax). Complexes with the enzyme exhibit ESR spectra typical of highly immobilized nitroxides. Binding of coenzyme NAD+ causes conformational changes of the binary enzyme/substrate complex as revealed by changes in the ESR spectrum of spin-labeled S-acetoacetylpantetheine.  相似文献   

12.
We report here a new approach to the study of the conformation of enzymes in the presence of specific substrates. Rabbit muscle lactate dehydrogenase was attached to CL-Sepharose via a cleavable spacer arm (-NH-(CH2)6NHCO(CH2)2SS(CH2)2CO-). The bound lactate dehydrogenase was digested with subtilisin BPN' in the presence of substrates of lactate dehydrogenase. The use of a flow system permits the maintenance of saturating levels of substrates. Proteolysis was followed by loss of activity of the enzyme column. The time course of proteolysis in the presence of either NADH, NAD+, or pyruvate alone did not differ from the control. However, when NADH and pyruvate were present simultaneously, the enzyme became more susceptible to proteolysis. The initial rate of proteolysis was increased by 40%. The abortive ternary complex (lactate dehydrogenase - NAD+ - pyruvate) also showed an increase in susceptibility to proteolysis. These findings clearly show that the productive ternary complex (lactate dehydrogenase - NADH - pyruvate) is conformationally different from the apoenzyme and binary complexes under optimal catalytic conditions.  相似文献   

13.
E. coli D-glyceraldehyde-3-phosphate dehydrogenase covalently bound to Sepharose was shown to form a complex with soluble E. coli 3-phosphoglycerate kinase with a stoichiometry of 1.77 +/- 0.61 kinase molecules per tetramer of the dehydrogenase and an apparent Kd of 1.03 +/- 0.68 microM (10 mM sodium phosphate, 0.15 M NaCl). No interaction was detected between E. coli D-glyceraldehyde-3-phosphate dehydrogenase and rabbit muscle 3-phosphoglycerate kinase. The species-specificity of the bienzyme association made it possible to develop a kinetic approach to demonstrate the functionally significant interaction between E. coli D-glyceraldehyde-3-phosphate dehydrogenase and E. coli 3-phosphoglycerate kinase, which consists of an increase in steady-state rate of the coupled reaction.  相似文献   

14.
The NAD-dependent glutamate dehydrogenase (GDH) (EC 1.4.1.2) from Laccaria bicolor was purified 410-fold to apparent electrophoretic homogeneity with a 40% recovery through a three-step procedure involving ammonium sulfate precipitation, anion-exchange chromatography on DEAE-Trisacryl, and gel filtration. The molecular weight of the native enzyme determined by gel filtration was 470 kDa, whereas sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave rise to a single band of 116 kDa, suggesting that the enzyme is composed of four identical subunits. The enzyme was specific for NAD(H). The pH optima were 7.4 and 8.8 for the amination and deamination reactions, respectively. The enzyme was found to be highly unstable, with virtually no activity after 20 days at -75 degrees C, 4 days at 4 degrees C, and 1 h at 50 degrees C. The addition of ammonium sulfate improved greatly the stability of the enzyme and full activity was still observed after several months at -75 degrees C. NAD-GDH activity was stimulated by Ca2+ and Mg2+ but strongly inhibited by Cu2+ and slightly by the nucleotides AMP, ADP, and ATP. The Michaelis constants for NAD, NADH, 2-oxoglutarate, and ammonium were 282 &mgr;M, 89 &mgr;M, 1.35 mM, and 37 mM, respectively. The enzyme had a negative cooperativity for glutamate (Hill number of 0.3), and its Km value increased from 0.24 to 3.6 mM when the glutamate concentration exceeded 1 mM. These affinity constants of the substrates, compared with those of the NADP-GDH of the fungus, suggest that the NAD-GDH is mainly involved in the catabolism of glutamate, while the NADP-GDH is involved in the catalysis of this amino acid. Copyright 1997 Academic Press. Copyright 1997 Academic Press  相似文献   

15.
The NAD-dependent glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) of the salt-tolerant yeast Debaryomyces hansenii was purified by poly(ethylene glycol) precipitation and a combination of chromatographic procedures. The enzyme existed in two forms with different ionic characters and specific activity. On SDS-polyacrylamide gel electrophoresis, both forms yielded one predominant band with an apparent molecular weight of 42,000. The specific activity of the enzyme was dependent on the concentration of the enzyme and on the ionic strength of the dissolving medium. All ions tested stimulated the enzyme activity in the ionic strength range 0-100 mM, with glutamate yielding the highest activity. Above these concentrations, the dehydrogenase showed high tolerance for glutamate in concentrations up to 0.9 M, whereas malate, sulfate and chloride were inhibitory. Enzyme activity showed little sensitivity to the type of cation present and was only slightly affected by 5 M glycerol. The true Km values for the substrates were 6.6 microM for NADH, 130 microM for dihydroxyacetone phosphate, 0.3 mM for NAD and 1.2 mM for glycerol-3-phosphate, and the enzyme showed specificity for these four substrates only. It is proposed that the enzyme functions in cellular osmoregulation by providing glycerol 3-phosphate for the biosynthesis of glycerol, the main compatible solute in D. hansenii, and that the enzyme is well adapted to function in yeast cells exposed to osmotic stress.  相似文献   

16.
Uniaxially oriented films with high tensile strength were processed from ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] (P(3HB)) by a method combining hot-drawing near the melting point of the polymer and two-step-drawing at room temperature. In a two-step-drawn and subsequently annealed film, P(3HB) molecular chains fall into two states: 2/1 helix (alpha-form) and planar zigzag (beta-form) conformations. The mechanism for generating the beta-form during two-step-drawing was investigated by time-resolved synchrotron wide- and small-angle X-ray scattering measurements (WAXD and SAXS), together with the measurement of stress-strain curves. It was found that the improvement of mechanical properties is due to not only the orientation of molecular chains but also the generation of the beta-form during the drawing. The crystal and molecular structures of the alpha-form remained unchanged until the yield point of the stress-strain curve. At the yield point, the long period obtained from SAXS doubled and a new reflection indicative of the beta-form was observed on the equatorial line in WAXD. The intensity of the reflection from the beta-form increased with an increase in the two-step-drawing ratio at room temperature. The SAXS pattern changed from a two-point reflection along the meridian to a cross pattern with streaking on the equatorial line, demonstrating the close alignment of shish-kebab structures. The reflection intensity, crystal orientation and crystal size of the alpha-form decreased during two-step-drawing. Based on these results, the beta-form is mainly introduced from the orientation of free molecular chains in the amorphous regions between alpha-form lamellar crystals, but the structural transformation of molecular chains also occurs from the alpha-form to the beta-form at the deformed lamellar crystals.  相似文献   

17.
Glucose dehydrogenase from rat liver microsomes was found to react not only with glucose as a substrate but also with glucose 6-phosphate, 2-deoxyglucose 6-phosphate and galactose 6-phosphate. The relative maximum activity of this enzyme was 29% for glucose 6-phosphate, 99% for 2-deoxyglucose 6-phosphate, and 25% for galactose 6-phosphate, compared with 100% for glucose with NADP. The enzyme could utilize either NAD or NADP as a coenzyme. Using polyacrylamide gradient gel electrophoresis, we were able to detect several enzymatically active bands by incubation of the gels in a tetrazolium assay mixture. Each band had different Km values for the substrates (3.0 x 10(-5)M glucose 6-phosphate with NADP to 2.4M glucose with NAD) and for coenzymes (1.3 x 10(-6)M NAD with galactose 6-phosphate to 5.9 x 10(-5)M NAD with glucose). Though glucose 6-phosphate and galactose 6-phosphate reacted with glucose dehydrogenase, they inhibited the reaction of this enzyme only when either glucose or 2-deoxyglucose 6-phosphate was used as a substrate. The Ki values for glucose 6-phosphate with glucose as substrate were 4.0 x 10(-6)M with NAD, and 8.4 x 10(-6)M with NADP; for galactose 6-phosphate they were 6.7 x10(-6)M with NAD and 6.0 x 10(-6)M with NADP. The Ki values for glucose 6-phosphate with 2-deoxyglucose 6-phosphate as substrate were 6.3 x 10(-6)M with NAD and 8.9 x 10(-6)M with NADP; and for galactose 6-phosphate, 8.0 x 10(-6)M with NAD and 3.5 x 10(-6)M with NADP. Both NADH and NADPH inhibited glucose dehydrogenase when the corresponding oxidized coenzymes were used (Ki values: 8.0 x 10(-5)M by NADH and 9.1 x 10(-5)M by NADPH), while only NADPH inhibited cytoplasmic glucose 6-phosphate dehydrogenase (Ki: 2.4 x 10(-5)M). The results indicate that glucose dehydrogenase cannot directly oxidize glucose in vivo, but it might play a similar role to glucose 6-phosphate dehydrogenase. The differences in the kinetics of glucose dehydrogenase and glucose 6-phosphate dehydrogenase show that glucose 6-phosphate and galactose 6-phosphate could be metabolized in quite different ways in the microsomes and cytoplasm of rat liver.  相似文献   

18.
Properties of glutamate dehydrogenase purified from Bacteroides fragilis   总被引:2,自引:0,他引:2  
The dual pyridine nucleotide-specific glutamate dehydrogenase [EC 1.4.1.3] was purified 37-fold from Bacteroides fragilis by ammonium sulfate fractionation, DEAE-Sephadex A-25 chromatography twice, and gel filtration on Sephacryl S-300. The enzyme had a molecular weight of approximately 300,000, and polymeric forms (molecular weights of 590,000 and 920,000) were observed in small amounts on polyacrylamide gel disc electrophoresis. The molecular weight of the subunit was 48,000. The isoelectric point of the enzyme was pH 5.1. This glutamate dehydrogenase utilized NAD(P)H and NAD(P)+ as coenzymes and showed maximal activities at pH 8.0 and 7.4 for the amination with NADPH and with NADH, respectively, and at pH 9.5 and 9.0 for the deamination with NADP+ and NAD+, respectively. The amination activity with NADPH was about 5-fold higher than that with NADH. The Lineweaver-Burk plot for ammonia showed two straight lines in the NADPH-dependent reactions. The values of Km for substrates were: 1.7 and 5.1 mM for ammonium chloride, 0.14 mM for 2-oxoglutarate, 0.013 mM for NADPH, 2.4 mM for L-glutamate, and 0.019 mM for NADP+ in NADP-linked reactions, and 4.9 mM for ammonium chloride, 7.1 mM for 2-oxoglutarate, 0.2 mM for NADH, 7.3 mM for L-glutamate, and 3.0 mM for NAD+ in NAD-linked reactions. 2-Oxoglutarate and L-glutamate caused substrate inhibition in the NADPH- and NADP+-dependent reactions, respectively, to some extent. NAD+- and NADH-dependent activities were inhibited by 50% by 0.1 M NaCl. Adenine nucleotides and dicarboxylic acids did not show remarkable effects on the enzyme activities.  相似文献   

19.
It is shown that the relative amount of the holoenzyme in the highly purified pyruvate dehydrogenase complex from the bovine brain is higher when the enzyme activity is assayed in the reaction of nonoxidative formation of acetaldehyde as compared to the pyruvate: NAD+ reductase reaction. The S0.5 values for thiamine pyrophosphate are as following: (TPP) (0.314 +/- 0.22) x 10(-7) M with reaction of nonoxidative formation of acetaldehyde, (0.188 +/- 0.08) x 10(-6) M and (1.65 +/- 1.16) x 10(-6) M in case of the pyruvate: NAD+ reductase reaction. TPP in the concentration of (0.5-6.0) x 10(-7) M completely protects the sites of nonoxidative formation of acetaldehyde from modification by the coenzyme analogs, 4'-oxythiamine pyrophosphate and tetrahydrothiamine pyrophosphate. However, the pyruvate: NAD+ reductase activity of the pyruvate dehydrogenase complex is inhibited in this case by 30-34%. The data obtained suggest that in contrast to the pyruvate: NAD+ reductase reaction the conversion of pyruvate to acetaldehyde occurs by the sites which tightly bound TPP.  相似文献   

20.
An NAD(P)-dependent glutamate dehydrogenase was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus. The enzyme is a hexamer (subunit mass 45 kDa) which dissociates into lower states of association when submitted to gel filtration. Isoelectric focusing analysis of the purified enzyme showed a pI of 5.7 and occasionally revealed microheterogeneity. The enzyme is strictly specific for the natural substrates 2-oxoglutarate and L-glutamate, but is active with both NADH and NADPH. S. solfataricus glutamate dehydrogenase revealed a high degree of thermal stability (at 80 C the half-life was 15 h) which was strictly dependent on the protein concentration. Very high levels of glutamate dehydrogenase were found in this archaebacterium which suggests that the conversion of 2-oxoglutarate and ammonia to glutamate is of central importance to the nitrogen metabolism in this bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号