首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior–inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.  相似文献   

2.
In this study, a new method is proposed to estimate the torque-vector directions of each shoulder muscle. The method is based on a multiple regression model that reconstructs shoulder torque, which is calculated from the hand force and posture, from the surface EMG of many muscles recorded simultaneously. The torque-vector directions of eleven shoulder muscles of four subjects were obtained at up to 30 different arm postures with this method. The mean confidence interval ( p< 0.05) of the estimated torque-vector direction of each subject was 7.7-10.6 degrees. The correlation coefficient between the measured shoulder torque and reconstructed shoulder torque was between 0.76-0.84. The results for majority of the muscles were in accordance with previous studies, and reasonable from the viewpoint of anatomy. The torque-vector directions of a muscle, which are estimated with this method, have more of a functional meaning than a pure anatomical or mechanical one. These indicate the direction of the shoulder torque accompanying the muscle activation for a normal shoulder action that involves the cooperative contraction of many muscles.  相似文献   

3.
In this study, a new method is proposed to estimate the torque-vector directions of each shoulder muscle. The method is based on a multiple regression model that reconstructs shoulder torque, which is calculated from the hand force and posture, from the surface EMG of many muscles recorded simultaneously. The torque-vector directions of eleven shoulder muscles of four subjects were obtained at up to 30 different arm postures with this method. The mean confidence interval (p < 0.05) of the estimated torque-vector direction of each subject was 7.7-10.6 degrees. The correlation coefficient between the measured shoulder torque and reconstructed shoulder torque was between 0.76-0.84. The results for majority of the muscles were in accordance with previous studies, and reasonable from the viewpoint of anatomy. The torque-vector directions of a muscle, which are estimated with this method, have more of a functional meaning than a pure anatomical or mechanical one. These indicate the direction of the shoulder torque accompanying the muscle activation for a normal shoulder action that involves the cooperative contraction of many muscles.  相似文献   

4.
When any muscle in the human musculoskeletal system is damaged, other muscles and ligaments tend to compensate for the role of the damaged muscle by exerting extra effort. It is beneficial to clarify how the roles of the damaged muscles are compensated by other parts of the musculoskeletal system from the following points of view: From a clinical point of view, it will be possible to know how the abnormal muscle and joint forces caused by the acute compensations lead to further physical damage to the musculoskeletal system. From the viewpoint of rehabilitation, it will be possible to know how the role of the damaged muscle can be compensated by extra training of the other muscles. A method to evaluate the influence of muscle deactivation on other muscles and joints is proposed in this report. Methodology based on inverse dynamics and static optimization, which is applicable to arbitrary motion was used in this study. The evaluation method was applied to gait motion to obtain matrices representing (1) the dependence of muscle force compensation and (2) the change to bone-on-bone contact forces. These matrices make it possible to evaluate the effects of deactivation of one of the muscles of the musculoskeletal system on the forces exerted by other muscles as well as the change to the bone-on-bone forces when the musculoskeletal system is performing the same motion. Through observation of this matrix, it was found that deactivation of a muscle often results in increment/decrement of force developed by muscles with completely different primary functions and bone-on-bone contact force in different parts of the body. For example, deactivation of the iliopsoas leads to a large reduction in force by the soleus. The results suggest that acute deactivation of a muscle can result in damage to another part of the body. The results also suggest that the whole musculoskeletal system must go through extra retraining in the case of damage to certain muscles.  相似文献   

5.
In this paper the concept of a three-dimensional biomechanical model of the human shoulder is introduced. This model is used to analyze static load sharing between the muscles, the bones and the ligaments. The model consists of all shoulder structures, which means that different positions and different load situations may be analyzed using the same model. Solutions can be found for the complete range of shoulder motion. However, this article focuses only on elevation in the scapular plane and on forces in structures attached to the humerus. The intention is to expand the model in future studies to also involve the forces acting on the other shoulder bones: the scapula and the clavicle. The musculoskeletal forces in the shoulder complex are predicted utilizing the optimization technique with the sum of squared muscle stresses as an objective function. Numerical results predict that among the muscles crossing the glenohumeral joint parts of the deltoideus, the infraspinatus, the supraspinatus, the subscapularis, the pectoralis major, the coracobrachialis and the biceps are the muscles most activated during this sort of abduction. Muscle-force levels reached values of 150 N when the hand load was 1 kg. The results from the model seem to be qualitatively accurate, but it is concluded that in the future development of the model the direction of the contact force in the glenohumeral joint must be constrained.  相似文献   

6.
Static optimization is commonly employed in musculoskeletal modeling to estimate muscle and joint loading; however, the ability of this approach to predict antagonist muscle activity at the shoulder is poorly understood. Antagonist muscles, which contribute negatively to a net joint moment, are known to be important for maintaining glenohumeral joint stability. This study aimed to compare muscle and joint force predictions from a subject-specific neuromusculoskeletal model of the shoulder driven entirely by measured muscle electromyography (EMG) data with those from a musculoskeletal model employing static optimization. Four healthy adults performed six sub-maximal upper-limb contractions including shoulder abduction, adduction, flexion, extension, internal rotation and external rotation. EMG data were simultaneously measured from 16 shoulder muscles using surface and intramuscular electrodes, and joint motion evaluated using video motion analysis. Muscle and joint forces were calculated using both a calibrated EMG-driven neuromusculoskeletal modeling framework, and musculoskeletal model simulations that employed static optimization. The EMG-driven model predicted antagonistic muscle function for pectoralis major, latissimus dorsi and teres major during abduction and flexion; supraspinatus during adduction; middle deltoid during extension; and subscapularis, pectoralis major and latissimus dorsi during external rotation. In contrast, static optimization neural solutions showed little or no recruitment of these muscles, and preferentially activated agonistic prime movers with large moment arms. As a consequence, glenohumeral joint force calculations varied substantially between models. The findings suggest that static optimization may under-estimate the activity of muscle antagonists, and therefore, their contribution to glenohumeral joint stability.  相似文献   

7.
Abstract

The purpose of this paper is an investigation of the peculiarities of biarticular muscles by means of modelling and analytical solution of the indeterminate problem. The basic model includes 10 muscle elements performing flexio/extensio in the shoulder, elbow and wrist. Four of them are biarticular muscles. Two modifications of the model with only monoarticular muscles are developed. The indeterminate problem is solved analytically using the objective criterion σciFi 2 where F( is the module of the i-th muscle force and Cj is a weight coefficient. The predicted muscle forces, joint reactions and moments are compared in-between the basic model and its two modifications for different joint angles, external loading and weight coefficients. The main conclusions are: it is impossible to formulate strict advantages of the biarticular muscles under quasistatical conditions, their peculiarities depend on limb position, external loading and neural control; in general, monoarticular muscles are more powerful than biarticular ones; the biarticular muscles fine tune muscle coordination, their control is more precise and graceful; the presence of biarticular muscles leads to an increase of the joint reactions and moments, thus stabilizing the limb.  相似文献   

8.
The forces generated by the muscles with origin on the human femur play a major role in transtibial amputee gait, as they are the most effective of the means that the body can use for propulsion. By estimating the forces generated by the thigh muscles of transtibial amputees, and comparing them to the forces generated by the thigh muscles of normal subjects, it is possible to better estimate the energy output needed from prosthetic devices. The purpose of this paper is to obtain the forces generated by the thigh muscles of transtibial amputees and compare these with forces obtained from the same muscles in the case of normal subjects. Two transtibial amputees and four normal subjects similar in size to the amputees were investigated. Level ground walking was chosen as the movement to be studied, since it is a common activity that most amputees engage in. Inverse dynamics and a muscle recruitment algorithm (developed by AnyBody Technology®) were used for generating the muscle activation patterns and for computing the muscle forces. The muscle forces were estimated as two sums: one for all posterior muscles and one for the anterior muscles, based on the position of the muscles of the thigh relative to the frontal plane of the human body. The results showed that a significantly higher force is generated by the posterior muscles of the amputees during walking, leading to a general increase of the metabolic cost necessary for one step.  相似文献   

9.
A method is described to estimate the line of action of muscles in the three-dimensional space from serial images of parallel muscle sections obtained in vivo by means of CT or MRI scanning. The external shape of a muscle, reconstructed from the series of parallel sections, is mathematically divided into a series of imaginary slices directed arbitrarily in the three-dimensional space. The line of action is estimated initially as a regression line through the centroids of these mathematical slices. A new series of mathematical slices is constructed perpendicular to the regression line and a new estimate of the line of action is obtained from their centroids. This procedure is repeated until the estimated line of action is perpendicular to the mathematical slices; it can then be considered as a reliable estimate of the line of action. The accuracy of the method has been tested for various reconstruction parameters and muscle shapes. The results of these tests show that the accuracy is relatively independent of the direction in which the sectional images have been made and that, except for relatively short and thick muscles, the estimated lines of action deviated less than about 2 degrees from the theoretical one. The presented method is a relatively simple mathematical technique which can be used easily for muscles reconstructed in vivo from routinely obtained sectional MRI or CT images.  相似文献   

10.
Strength profiles of the shoulder joint are measured experimentally for two arm positions in "the scapular plane" in order to present quantitative data on the shoulder strength. Apart from yielding the actual force a subject can exert in various directions, these measurements also exhibit e.g. the strongest and weakest directions, in fact the relative strength in all directions. The inter-individual variation of the direction of maximal force was at most 14 degrees (sd). The experimental profiles are compared with the corresponding theoretical profiles, obtained by using a shoulder model. The calculations were made both with default muscle parameters and individually adapted parameters. The results show that the employed shoulder model, which is based on data from an elderly population, may be adapted to other populations and that the necessary changes in relative muscle strength are those expected on biomechanical grounds. Without model changes the difference between measured (in the mean) and predicted maximal force directions was at most 50 degrees. Muscle parameter adjustment reduced this difference to 23 degrees. The strength profiles clearly indicate in what direction a person can produce larger forces and which muscles that contribute.  相似文献   

11.
Current views on the function of the deltoid and rotator cuff muscles emphasize their roles in arm-raising as participants in a scapulohumeral force "couple." The acceptance of such a mechanism is based primarily on a 1944 EMG study of human shoulder muscle action. More recently, it has been suggested that shoulder joint stabilization constitutes a second and equally important function of the cuff musculature, especially in nonhuman primates which habitually use their forelimbs in overhead postural and locomotor activities. Few comparative data exist, however, on the actual recruitment patterns of these muscles in different species. In order to assess the general applicability of a scapulohumeral force couple model, and the functional significance of the differential development of the scapulohumeral musculature among primate species, we have undertaken a detailed study of shoulder muscle activity patterns in nonhuman primates employing telemetered electromyography, which permits examination of unfettered natural behaviors and locomotion. The results of our research on the chimpanzee, Pan troglodytes, on voluntary reaching and two forms of "arboreal" locomotion reveal four ways in which previous perceptions of the function of the scapulohumeral muscles must be revised: 1) the posterior deltoid is completely different in function from the middle and anterior regions of this muscle; 2) the integrity of the glenohumeral joint during suspensory postures is not maintained solely by osseoligamentous structures; 3) the function of teres minor is entirely different from that of the other rotator cuff muscles and is more similar to the posterior deltoid and teres major; and 4) each remaining member of the rotator cuff plays a distinct, and often unique, role during natural behaviors. These results clearly refute the view that the muscles of the rotator cuff act as a single functional unit in any way, and an alternative to the force couple model is proposed.  相似文献   

12.
A mathematical model of Ihe human upper limb was developed based on high-resolution medical images of the muscles and bones obtained from the Visible Human Male ( HM) project. Three-dimensional surfaces of the muscles and bones were reconstructed from Computed Tomography (CT) images and Color Cryosection images obtained from the VHM cadaver. Thirteen degrees of freedom were used to describe the orientations of seven bones in the model: clavicle, scapula, humerus, radius, ulna, carpal bones, and hand. All of the major articulations from the shoulder girdle down to the wrist were included in the model. The model was actuated by 42 muscle bundles, which represented the actions of 26 muscle groups in the upper limb. The paths of the muscles were modeled using a new approach called the Obstacle-set Method (33) The calculated paths of the muscles were verified by comparing the muscle moment arms computed in the model with the results of anatomical studies reported in the literature, In-vivo measurements of maximum isometric muscle torques developed at the shoulder, elbow, and wrist were also used to estimate the architectural properties of each musculotendon actuator in the model. The entire musculoskeletal model can be reconstructed using the data given in this paper, along with information presented in a companion paper which defines the kinematic structure of the model (26)  相似文献   

13.
A mathematical model of the human upper limb was developed based on high-resolution medical images of the muscles and bones obtained from the Visible Human Male (VHM) project. Three-dimensional surfaces of the muscles and bones were reconstructed from Computed Tomography (CT) images and Color Cryosection images obtained from the VHM cadaver. Thirteen degrees of freedom were used to describe the orientations of seven bones in the model: clavicle, scapula, humerus, radius, ulna, carpal bones, and hand. All of the major articulations from the shoulder girdle down to the wrist were included in the model. The model was actuated by 42 muscle bundles, which represented the actions of 26 muscle groups in the upper limb. The paths of the muscles were modeled using a new approach called the Obstacle-set Method [33]. The calculated paths of the muscles were verified by comparing the muscle moment arms computed in the model with the results of anatomical studies reported in the literature. In-vivo measurements of maximum isometric muscle torques developed at the shoulder, elbow, and wrist were also used to estimate the architectural properties of each musculotendon actuator in the model. The entire musculoskeletal model can be reconstructed using the data given in this paper, along with information presented in a companion paper which defines the kinematic structure of the model [26].  相似文献   

14.
In this paper, we measured the maximum isometric force at the hand in eight directions in the horizontal plane and at five positions in the workplace. These endpoint forces were the result of shoulder horizontal adduction/abduction and elbow flexion/extension torques. We found that the normalized maximum forces of all the six subjects deviated less than 15%, despite intra-subject differences in muscle strength of more than a factor of two. The maximum forces were found to systematically depend on the force direction and on the hand position in the workspace. The largest forces were found in a direction approximately along the line connecting shoulder joint and hand, and the smallest forces perpendicular to that line, thereby forming an elliptically shaped pattern. The elongation of the pattern was the largest for those hand positions having the more extended elbow joint. By using a lumped six-muscle model, with two mono-articular muscle pairs and one bi-articular pair, we were able to predict the observed force patterns. Here, we assumed that one of the muscles generates its maximum force and the others adjust their output to point the endpoint force in the required direction. We used a principal component analysis of the surface EMGs of simultaneously measured representatives of four of the six muscles. With the same model, we were then able to determine the principal directions of all the six muscle groups.  相似文献   

15.
A general theory is described for deriving the mechanical effect of muscles with large attachment sites. In a cadaver experiment the complete attachment sites and bundle distribution of 16 muscles of the shoulder mechanism were recorded. These data were used to calculate the mechanical effect, i.e. the resulting force and moment vector, for a large number (200) and a reduced number (maximal 6) of muscle lines of action. The resulting error between both representations is small. The number of muscle lines of action in the reduced representation depends on the shape of the attachment site and muscle architecture. An important feature of this method is that the necessary number of muscle lines of action is determined afterwards. In the often used centroid line approach the number of muscle lines of action and partitioning of muscles is determined before recording the geometry, leading to unverifiable results.  相似文献   

16.
By means of biomicroscopical investigations of bulbar conjunctiva in healthy persons of different age certain characteristics on normal microcirculatory bed have been obtained. Morphometric analysis of the vital microscopical observations has revealed some age peculiarities in microcirculation of the conjunctiva. As a result of clinical examination of the persons, it has been stated that the phenomena noticed at biomicroscopy which characterize certain anomalies of microcirculatory parameters correlate with latent pathology, closely related diseases or developmental anomalies. Therefore, it is possible to consider the method of biomicroscopical investigation of the conjunctiva with a subsequent morphometric analysis of the data obtained as suitable for application not only for clinical but also for prophylactic examination of healthy persons.  相似文献   

17.
Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.  相似文献   

18.
Simulation of Respiratory Mechanics   总被引:2,自引:0,他引:2       下载免费PDF全文
The dynamic relationship between respiratory muscle effort and the consequent changes in lung volume is investigated. A mathematical simulation based on the structures that form the connection between these two variables makes it possible to lump the contribution from all respiratory muscles into a single time-varying driving force. When this force is applied to the system model, the appropriate lung volume pattern results. The simulation results indicate the accuracy of the model and the validity of the lumped muscle force assumption. In addition, the system model adequately describes abnormal conditions such as decreased lung compliance and increased airway resistance. The results of this simulation suggest that the modeling technique is extremely useful in describing and analyzing complex respiratory system interactions.  相似文献   

19.
Determining tendon tensions of the finger muscles is crucial for the understanding and the rehabilitation of hand pathologies. Since no direct measurement is possible for a large number of finger muscle tendons, biomechanical modelling presents an alternative solution to indirectly evaluate these forces. However, the main problem is that the number of muscles spanning a joint exceeds the number of degrees of freedom of the joint resulting in mathematical under-determinate problems. In the current study, a method using both numerical optimization and the intra-muscular electromyography (EMG) data was developed to estimate the middle finger tendon tensions during static fingertip force production. The method used a numerical optimization procedure with the muscle stress squared criterion to determine a solution while the EMG data of three extrinsic hand muscles serve to enforce additional inequality constraints. The results were compared with those obtained with a classical numerical optimization and a method based on EMG only. The proposed method provides satisfactory results since the tendon tension estimations respected the mechanical equilibrium of the musculoskeletal system and were concordant with the EMG distribution pattern of the subjects. These results were not observed neither with the classical numerical optimization nor with the EMG-based method. This study demonstrates that including the EMG data of the three extrinsic muscles of the middle finger as inequality constraints in an optimization process can yield relevant tendon tensions with regard to individual muscle activation patterns, particularly concerning the antagonist muscles.  相似文献   

20.
The use of optimization techniques to predict individual muscle forces in redundant biomechanical systems implies the formulation of a criterion for load sharing between the muscles. In part I of this paper, the characteristics and performance of several linear and non-linear criteria reported in the literature have been compared for static-isometric knee flexion. The results show that linear criteria inherently predict discrete muscle action (orderly recruitment of muscles) whereas non-linear criteria can predict synergistic action. All criteria predict that relatively more force is allocated to muscles with large moment arms. When muscle stresses (or ratios of muscle force to maximum muscle force) are used as the decision variables in the objective function, then relatively more force is allocated to muscles with large maximum possible force as well. Future formulations of the optimization should consider the differences in fiber type composition among the muscles. Such an approach is presented in part II of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号