首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Electric and Magnetic Field Measurement Project for Utilities—the Electric Power Research Institute (EPRI) Electric and Magnetic Field Digital Exposure (EMDEX) Project (the EPRI EMDEX Project)—was a multifaceted project that entailed technology transfer, measurement protocol design, data management, and exposure assessment analyses. This paper addresses one specific objective of the project: the collection, analysis, and documentation of power-frequency magnetic field exposures for a diverse population of utility workers. Field exposure data measured by an EMDEX system were collected by volunteer utility employees at 59 sites in four countries between September, 1988, and September, 1989. Specially designed sampling procedures and data collection protocols were used to ensure uniform implementation across sites. Volunteers within 13 job classifications recorded which of eight work or three nonwork environments they occupied while wearing an EMDEX meter. Approximately 50,000 hours of magnetic field exposure records taken at 10 s intervals were obtained, about 70% of which were from work environments. Exposures and time spent in environments were analyzed by primary work environment, by occupied environment, and by job classification. Generally, for utility-specific job classifications related to the generation, transmission, and distribution of electricity, the field and exposure measurements in terms of workday mean field were higher than in more general occupations. The job classifications with the highest (median workday mean) exposure were substation operators (0.7 μT) and electricians (0.5μT). Total variance also tended to be largest for utility-specific job classifications. For these workers, the contributions of between-worker and within-worker variances to total variance were about the same. Measurements in utility-specific environments were higher than in more general environments. Estimates of time-integrated exposure indicated that utility-specific job classifications received about one-half or more of their total exposure on the job. The nonwork field and exposure distributions for workers in all job categories were comparable with median nonworkday means of about 0.09 μT. © 1995 Wiley-Liss, Inc.  相似文献   

2.
In occupational environments, an increasing number of electromagnetic sources emitting complex magnetic field waveforms in the range of intermediate frequencies is present, requiring an accurate exposure risk assessment with both in vitro and in vivo experiments. In this article, an in vitro exposure system able to generate complex magnetic flux density B‐fields, reproducing signals from actual intermediate frequency sources such as magnetic resonance imaging (MRI) scanners, for instance, is developed and validated. The system consists of a magnetic field generation system and an exposure apparatus realized with a couple of square coils. A wide homogeneity (99.9%) volume of 210 × 210 × 110 mm3 was obtained within the coils, with the possibility of simultaneous exposure of a large number of standard Petri dishes. The system is able to process any numerical input sequence through a filtering technique aimed at compensating the coils' impedance effect. The B‐field, measured in proximity to a 1.5 T MRI bore during a typical examination, was excellently reproduced (cross‐correlation index of 0.99). Thus, it confirms the ability of the proposed setup to accurately simulate complex waveforms in the intermediate frequency band. Suitable field levels were also attained. Moreover, a dosimetry index based on the weighted‐peak method was evaluated considering the induced E‐field on a Petri dish exposed to the reproduced complex B‐field. The weighted‐peak index was equal to 0.028 for the induced E‐field, indicating an exposure level compliant with the basic restrictions of the International Commission on Non‐Ionizing Radiation Protection. Bioelectromagnetics 34:211–219, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
This article presents the measurement results of human exposure to CDMA800 and CDMA1800 signals at locations in Korea where the general public has expressed concern. Measurements were performed at 50 locations across the country to compare the electromagnetic field levels with the general public exposure compliance limits. At each site, the distances between the nearest single or co‐located base station and measurement positions were within a range of approximately 32–422 m. The measured exposure levels were very low compared with the international standard and the Korean human protection notice. The highest field level was 1.5 V/m, which corresponds to 0.15% of the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) guidelines for human exposure. Bioelectromagnetics 31:495–498, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
Urinary S-phenylmercapturic acid (SPMA) is a biomarker suggested by the American Conference of Governmental Industrial Hygienists (ACGIH) for assessing occupational exposure to benzene. A possible cause of the miscorrelation between environmental monitoring and biological monitoring for benzene exposure, which many authors complain about, is the existence of a urinary metabolite that turns into SPMA by acid hydrolysis. Forty urine samples were tested to determine which concentration value would correspond to the ACGIH Biological Exposure Index (BEI) of 25 µg g-1 creatinine if exposure assessment was based on the determination of SPMA after quantitative hydrolysis of its precursor. An aliquot of each sample was hydrolysed with 9 M H2SO4, a second one was brought to pH 2 and a third one was used as it was (free SPMA). SPMA was determined by high-performance liquid chromatography/tandem mass spectrometric technique (HPLC/MS/MS) using an internal standard. The analytical method was validated in the range 0.5-50 µg l-1. The average SPMA in pH 2 samples is 45-60% of the total, while free SPMA varies from 1% to 66%. The hydrolysis of pre-SPMA reduces the likelihood of variability in the results by reducing pH differences in urine samples and increasing the amount of measured SPMA. The BEI limit value would be about 50 µg g-1 creatinine.  相似文献   

6.
Abstract

Urinary S-phenylmercapturic acid (SPMA) is a biomarker suggested by the American Conference of Governmental Industrial Hygienists (ACGIH) for assessing occupational exposure to benzene. A possible cause of the miscorrelation between environmental monitoring and biological monitoring for benzene exposure, which many authors complain about, is the existence of a urinary metabolite that turns into SPMA by acid hydrolysis. Forty urine samples were tested to determine which concentration value would correspond to the ACGIH Biological Exposure Index (BEI) of 25 µg g?1 creatinine if exposure assessment was based on the determination of SPMA after quantitative hydrolysis of its precursor. An aliquot of each sample was hydrolysed with 9 M H2SO4, a second one was brought to pH 2 and a third one was used as it was (free SPMA). SPMA was determined by high-performance liquid chromatography/tandem mass spectrometric technique (HPLC/MS/MS) using an internal standard. The analytical method was validated in the range 0.5–50 µg l?1. The average SPMA in pH 2 samples is 45–60% of the total, while free SPMA varies from 1% to 66%. The hydrolysis of pre-SPMA reduces the likelihood of variability in the results by reducing pH differences in urine samples and increasing the amount of measured SPMA. The BEI limit value would be about 50 µg g?1 creatinine.  相似文献   

7.
The design, construction, and results of evaluation of an animal-exposure system for the study of biological effects of extremely low frequency (ELF) magnetic fields are described. The system uses a square coil arrangement based on a modification of the Helmholtz coil. Due to the cubic configuration of this exposure system, horizontal and vertical magnetic fields as high as 0.3 mT can be generated. Circularly polarized magnetic fields can also be generated by changing the current and phase difference between two sets of coils. Tests were made for uniformity of the magnetic field, stray fields, sham-exposure ratio of stray field, changes of temperature and humidity, light intensity and distribution inside the animal-housing space, and noise due to air-conditioning equipment. Variation of the magnetic field was less than 2% inside the animal housing. The stray-field level inside the sham-exposure system is less than 2% of experimental exposure levels. The system can be used for simultaneous exposure of 48 rats (2 to a cage) or 96 mice (4 to a cage). © 1993 Wiley-Liss. Inc.  相似文献   

8.
ABSTRACT Acoustic recording systems are being used more frequently to estimate habitat occupancy or relative abundance, and to monitor population trends over time. A potential concern with digital recording systems is that changes in technology could affect detectability of birds and cause bias in trend estimates based on counts of birds detected. We evaluated several currently available commercial recording systems ranging from low‐cost multipurpose digital recorders to custom‐designed wildlife recorders (US$250–$7000 price range) to examine possible differences among systems in species detection. We made recordings during Breeding Bird Surveys (BBS) counts using several units concurrently, and asked several expert birders to listen to the recordings in a factorial design. We found that birders detected, on average, 10% fewer species on some units compared to others, though there was high variance. Analysis of a subset of recordings, using spectrograms and repeated listening, suggested that ~90% of species on each BBS stop could be clearly detected on all units. The remaining species could be identified on at least one unit, but were hard or impossible to detect on others. We found that the recording unit with the lowest empirical signal‐to‐noise‐ratio (SNR) had the lowest number of birds detected on the BBS recordings, and that frequency‐specific SNR differed among units. Missed detections were likely related to variation in internal noise and frequency‐dependent sensitivity of the units, and were an issue for all systems regardless of price. We caution that researchers using recorders need to consider variation among recording systems in their study design, particularly for long‐term monitoring programs.  相似文献   

9.
Extremely low-frequency (ELF) magnetic field exposure systems are usually subject to field disturbances induced by external sources. Here, a method for designing a feedback control system for cancelling the effect of external ELF magnetic field disturbances on the magnetic field over the exposure area is presented. This method was used in the design of a feedback-controlled exposure system for an inverted microscope stage. The effectiveness of the proposed feedback control system for disturbance rejection was verified experimentally and by means of computer simulation. Bioelectromagnetics 18:299–306, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
We describe devices designed for magnetic field exposures in which field amplitude and gradients are controlled simultaneously. Dosimetry based on field continuation of high resolution magnetic field scans and numerical models is compared with validation measurements. The dosimetry variables we consider are based on the assumption that the biological or chemical system under study has field transducers that are spatially isotropic, so that absolute field amplitude and two gradient components fully describe local exposure.  相似文献   

11.
氟监测植物的筛选及监测指标的研究   总被引:1,自引:0,他引:1  
本文报道用开顶式熏气装置筛选大气氟监测植物,研究监测植物在氟污染情况下的反应,以确立监测指标和监测定量化。结果表明,梅、唐菖蒲、赤胫散、火炭母、水杉、金荞麦、雪松、苹果等植物是良好的氟监测植物,其中赤胫散、火炭母是国内筛选出来的监测植物,可用来监测大气氟污染。受害浓度(阈值)、症状出现时间、受害叶面积%和叶片含氟量可作为植物的监测指标,生理反应指标作为参考。  相似文献   

12.
A space efficient, whole body microwave exposure system for unrestrained laboratory animals utilizing a flared parallel plate waveguide is described. The system comprises an Iridium wireless signal source, signal generator, power supply and amplifier (400 W), a coax to waveguide transition, an open ended, flared parallel plate waveguide, and animal exposure area with a dipole field sensing antenna. Across the waveguide aperture the system provides uniform exposure (+/-3 dB incident RF power density) for small animals (rats, mice or hamsters) in up to 18 standard cages for housing groups of animals. Overall system dimensions are 3.6 m (d)x2.4 m (w)x1.6 m (h). Operating at 1.62 GHz, the system provided average power density of 3.7 W/m(2) in the cage area, resulting in a calculated whole body dose of 0.07 W/kg and a calculated average brain dose of 0.19 W/kg.  相似文献   

13.
Exposure systems that provide good magnetic field uniformity, minimum stray fields, and minimal heating, vibration, and hum, as well as capability for true sham exposure in which current flows in the coils, are needed to determine rigorously the biological effects of weak magnetic fields. Designs based on acrylic polymer coil support structures and twisted pair bifilary coil windings were employed to fabricate several different systems for the exposure of laboratory animals and cell cultures to magnetic fields. These systems exhibit excellent performance characteristics in terms of exposure field uniformity, stray field containment, and exposure field cancellation in the sham exposure mode. A custom-written computer program was used to determine the best arrangement for coils with regard to field uniformity in the exposure volume and stray field containment. For in vivo exposures, modules were made up of four Merritt four-coil sets, built into a single structure and positioned to form an octapole with fields directed in the horizontal plane. For in vitro applications, two different coil configurations were selected to produce the vertical fields required. A quadrupole system, comprising modules consisting of two Merritt four-coil sets arranged side by side to limit stray fields, was built as a prototype. In the second configuration, one Merritt four-coil set was positioned inside the other to form a concentric coil set. In both in vitro systems, exposure chambers were connected to remote commercial incubators in order to reduce ambient magnetic fields in the exposure volume. An active field cancellation circuit was developed for reducing ambient AC magnetic fields in the in vitro sham exposure chamber, when necessary. These design and fabrication approaches provide systems that offer uniform field exposures and excellent stray field containment when needed and are portable, washable, and relatively inexpensive. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    14.
    A programmable system has been developed for the study of both transient and persistent effects of extremely low frequency (ELF) magnetic field exposure of cell cultures. This high‐precision exposure system enables experimental blinding and fully characterized exposure while simultaneously allowing live cell imaging. It is based on a live imaging cell around which two asymmetrical coils are wound in good thermal contact to a temperature‐controlled water jacket, and is mounted on a microscope stage insert. The applied B‐field uniformity of the active volume is better than 1.2% with an overall exposure uncertainty of less than 4.3% with very low transient field levels. The computer‐controlled apparatus allows signal waveforms that are sinusoidal or composed of several harmonics, blind protocols, and monitoring of exposure and environmental conditions. B‐fields up to 4 mT root mean square amplitude are possible with minimal temperature variation and no recognizable temperature differences between exposure and sham states. Sources of artifacts have been identified and quantified. There are no visible vibrations observable even at the highest magnifications and exposure levels. Bioelectromagnetics 34:231–239, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

    15.
    Highly sensitive immunoassays have been used to quantitate aflatoxins (AF) and N-nitrosamines (NNO) in human body fluids and tissues, respectively. This approach was taken in order to quantitate environmental exposure to these agents at an individual level to facilitate the investigation of their role in the etiology of human cancer. In order to analyse AF in human urine, an immunopurification step has been developed by using AF-specific antibody bound to AH-Sepharose 4B gel in a small (4-ml gel volume) affinity column prior to enzyme-linked immunosorbent assay (ELISA). The ELISA can be used to quantitate aflatoxin B1 (AFB1) over the range 0.01 ng/ml to 10 ng/ml and the assay system has been validated by using human urine samples spiked with AFB1 over this concentration range. In addition, 29 urine samples from the Philippines have been analysed and found to contain a range of levels from zero to 4.25 ng/ml AFB1 equivalent with a mean of 0.875 ng/ml. This compared with a mean of 0.066 ng/ml AFB1 equivalent in samples from France. Radioimmunoassay of O6-methyldeoxyguanosine (O6-medG) has been performed on human oesophageal and cardiac stomach mucosal DNA from tissue samples obtained during surgery in Linxian County, People's Republic of China, an area of high risk for both oesophageal and stomach cancer. Using the methodology described and having 1 mg of hydrolyzed DNA allows the detection of approximately 25 fmol O6medG per mg DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

    16.
    Studies were carried out on two populations occupationally exposed to ethylene oxide (EtO) using different physical and biological parameters. Blood samples were collected from 9 hospital workers (EI) and 15 factory workers (EII) engaged in sterilization of medical equipment with EtO and from matched controls (CI and CII). Average exposure levels during 4 months (the lifespan of erythrocytes) prior to blood sampling were estimated from levels of N-(2-hydroxyethyl)valine adducts in hemoglobin. They were significantly enhanced in EI and EII and corresponded to a 40-h time-weighted average of 0.025 ppm in EI and 5 ppm in EII. Exposures were usually received in bursts with EtO concentrations in air ranging from 22 to 72 ppm in EI and 14 to 400 ppm in EII. All samples were analyzed for HPRT mutants (MFs), chromosomal aberrations (CAs), micronuclei (MN) and SCEs. MFs were significantly enhanced by 60% in EII but not in EI. These results are the first demonstration of mutation induction in man by ethylene oxide. CAs were significantly enhanced in EI and EII by 130% and 260% respectively. MN were not enhanced in EI but significantly in EII(217%). The mean frequency of SCEs was significantly elevated by 20% in EI and by almost 100% in EII. SCE was the only parameter that allowed distinction between daily and occasionally exposed workers in EII. An interesting finding in exposed workers was the large increase of the percentage of cells with high frequencies of SCE (3–4 times in EI and 17-fold in EII).

    The relative sensitivity of endpoints for detection of EtO exposure in the present investigation was in the following order: HOEtVal adducts > SCEs > chromosomal aberrations > micronuclei > HPRT mutants.  相似文献   


    17.
    Radio frequency identification (RFID) is an innovative technology currently applied in a large number of industrial and consumer applications. The spread of RFID technology does not correspond to a parallel increase in studies on its possible impact on health in terms of electromagnetic field (EMF) exposure. The aim of this paper is to estimate, by computational techniques, the EMF generated by passive RFID systems for mother-newborn identity reconfirmation. The computation was performed on realistic models of newborn and mother for three different reader positions. The compliance with EMF exposure guidelines was investigated as a function of the change in reader-tag specifications (magnetic field threshold and maximum distance of the reader to awake the tag) and time of use of the reader close to the body. The results show that attention should be paid to the identification of the optimal reader-tag technical specifications to be used in this type of application. That should be done by an accurate exposure assessment investigation, in particular for newborn exposure. The need to reduce the exposure time as much as possible indicates the importance of specific training on the practical applications of the RFID (DATALOGIC J-series, Bologna, Italy) device.  相似文献   

    18.
    19.
    A new head exposure system for double blinded human provocation studies, which requires EEG recording during exposure with GSM900- and UMTS-like signals has been developed and dosimetrically evaluated. The system uses planar patch antennas fixed at 65 mm distance from the subject's head by a special headset, which provides minimum impairment of the test subjects and ensures an almost constant position of the antennas with respect to the head, even in case of head movements. Compared to exposure concepts operating small antennas in close proximity to the head, the concept of planar antennas at a certain distance from the head produces a much more homogeneous SAR distribution in the temporal and parietal lobe of the brain. At the same time the resulting uncertainty of exposure due to variations in head size, variations of the dielectric properties of tissues and unavoidable small changes of the antenna's position with respect to the head, is reduced to the order of approximately 3 dB, which is a significant improvement to comparable head exposure systems reported in literature in the past. To avoid electromagnetic interference on the EEG recording caused by the incident RF-field an appropriate double-shielded filter circuit has been developed. Furthermore, the effect of the presence of the sintered Ag/AgCl EEG electrodes and electrode wires on the SAR distribution inside the head has been investigated and was found to be minimal if the electrode wires are arranged orthogonal to the incident electric field vector. EEG electrode arrangement parallel to the incident field vector, however, might cause drastic changes in the SAR distribution inside the head.  相似文献   

    20.
    The development of scientifically sound instrumentation, methods, and procedures for the electromagnetic exposure assessment of compact fluorescent lamps (CFLs) is investigated. The incident and induced fields from 11 CFLs have been measured in the 10 kHz–1 MHz range, and they are compared with the levels for incandescent and light emitting diode (LED) bulbs. Commercially available equipment was used to measure the incident fields, while a novel sensor was built to assess the induced fields in humans. Incident electric field levels significantly exceed the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) reference levels at close distances for some sources, while the induced fields are within the ICNIRP basic restrictions. This demonstrates the importance of assessing the induced fields rather than the incident fields for these sources. Maximum current densities for CFLs are comparable to the limits (in the range of 9% to 56%), demonstrating the need for measurements to establish compliance. For the frequency range investigated, the induced fields were found to be considerably higher for CFLs than for incandescent light bulbs, while the exposure from the two LED bulbs was low. The proposed instrumentation and methods offer several advantages over an existing measurement standard, and the measurement uncertainty is significantly better than the assessment of electric and magnetic fields at close distances. Bioelectromagnetics 33:166–175, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号