首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文描述了大鼠脊髓L_1节段后柱、后索、侧索和前角的诱发电位及其损伤后的变化,并观察了切断L_4、L_5脊神经背、腹根与横断高位颈髓对电位的影响,以进行行电位来源分析。结果可见,上述四个区域的诱发电位基本由早反应三相波和晚反应组成。分别电解损毁这些部位后,电位波幅均普遍降低,晚期反应较早反应降低明显。后柱或后索受损对电位影响最大。局部损毁后可见L_1及T_(13)水平的硬膜上电位改变明显,尤其晚反应减弱、波峰平坦。反应时值与潜伏时未见明显改变。切断L_4脊神经背、腹根后、电位基本消失。去大脑对电位未见明显影响。结果表明,刺激坐骨神经诱发的脊髓电位起源于低位腰段传入神经和脊髓内多通路的兴奋传导,在一定程度上受腹根逆行活动的影响,与大脑及脊髓下行传导束活动无直接联系。脊髓诱发电位的幅度与波形改变可作为脊髓损伤的判断指标之一。  相似文献   

2.
殷勇  程珍凤 《生理学报》1990,42(6):534-539
电刺激大鼠颈髓背外侧束(DLF),在脊髓腰段用微电极记录到—诱发场电位,将其长时程慢电位正波称为 DLF-FP。DLF-FP 的潜伏期为7.22±1.41ms,达峰时间为15.12±5.58ms,时程为93.92±9.06ms。绘制 DLF-FP 等电位图发现:其负电场中心位于背表面下1.0—1.3mm,与外周传入诱发的场电位(P_1-FP)的起源部位基本一致。印防己毒素抑制DLF-FP,士的宁加强 DLF-FP。在一定时间范围内,先后刺激腓肠神经和 DLF,两者所诱发的场电位具有总和和抑制现象。这些结果表明 DLF-FP 是初级传入末梢去极化的反映,可能和刺激外周神经诱发的场电位共用脊髓环路。  相似文献   

3.
The character of dorsal horn motoneurons and interneurons evoked by stimulation of the dorsal root, and activity of Renshaw cells in response to stimulation of the ventral root were studied in albino rats in the lower lumbar segments of the spinal cord 5 days after sciatic nerve division. A significant increase in the mean amplitude of excitatory postsynaptic potentials of motoneurons was observed on the side of division of the nerve. No significant change in membrane potential and in the threshold of appearance of the action potential of these motoneurons took place. The mean number of action potentials and the duration of discharge of the Renshaw cells and dorsal horn interneurons likewise were not significantly changed.Dnepropetrovsk Medical Institute, Ukrainian Ministry of Health. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 306–314, May–June, 1992.  相似文献   

4.
从大鼠的背侧皮肤表面和椎板分别记录刺激坐骨神经诱发的脊髓电位,并与硬膜上电位进行了比较。结果表明:皮肤表面电位与硬膜上直接记录具有相同的节段性特征。从硬膜上经椎板至皮肤表面、反应潜伏时延长、电位幅度递减。各波峰潜伏时也相应增加。电位的波形、幅度与记录方式有关,但反应潜伏时不受影响。  相似文献   

5.
6.
The effects of stimulation of the dorsal funiculus on dorsal surface potentials (DSPs) of the spinal cord evoked by stimulation of a peripheral nerve and on antidromic action potentials (AAPs) evoked by stimulation of terminal branches of primary afferent fibers and recorded from the afferent nerve or dorsal root, were investigated in acute experiments on spinal cats and on cats anesthetized with pentobarbital and chloralose. Stimulation of the dorsal funiculus led to biphasic inhibition of the N1-component of the DSP with maxima at the 15th–30th and 60th–80th milliseconds between the conditioning and testing stimuli. Maximal reinforcement of the AAP was found with these intervals. Bilateral division of the dorsal funiculi between the point of application of the conditioning stimuli and the point of recording the DSP abolished the first wave of inhibition of the DSP and the reinforcement of the AAP. After total transection of the cord above the site of conditioning stimulation the picture was unchanged. It is concluded that the initial changes in DSP and AAP are due to activation of the presynaptic inhibition mechanism by antidromic impulses traveling along nerve fibers running in the dorsal funiculus. Repeated inhibition of the DSP, like reinforcement of the AAP, can possibly be attributed to activation of similar inhibitory mechanisms through the propriospinal neurons of the spinal cord.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 401–405, July–August, 1973.  相似文献   

7.
Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative modulatory response on spinal autonomic and somatic function.  相似文献   

8.
Epidural electrodes implanted for a percutaneous trial of therapeutic spinal cord stimulation were used to record electrical events evoked by the stimulation of peripheral nerves or of the spinal cord itself. The data collected in patients with no neurological deficit were analyzed in order (1) to check the consistency between epidural and surface recordings, (2) to get information on the genesis of such potentials, and (3) to demonstrate the feasibility of complex neurophysiological studies by means of epidural electrodes. Spinal cord potentials evoked by segmental volleys were recorded at cervical levels with the recording electrodes anterior, lateral and posterior to the spinal cord. The refractory period of the evoked potentials has been studied as well. Responses to stimulation of the tibial nerve were obtained at T11-12 vertebral level with posterior epidural electrodes. Segmental cervical potentials were characterized by a P10, N11, N13/P13 followed by a slow positivity/negativity. A response of similar waveform, but with different peak latencies, was recorded at segmental levels following tibial nerve stimulation. Such a response showed an increasing number of spikes while ascending along the spinal cord. Maximum conduction velocities in the cord were between 65 and 85 m/s. Our epidural recordings are similar to those obtained from the skin, but with a greater amplitude and waveform resolution. Furthermore, the use of epidural electrodes made it feasible to perform complex examinations of sensory function (i.e., the study of orthodromic and antidromic conduction along the dorsal cord and of the influence of a single dorsal cord volley on the segmental cervical potential). Finally, the genesis of the potentials recorded is discussed.  相似文献   

9.
The effects of glucocorticoid (dexamethasone) and mineralocorticoid (deoxycorticosterone) hormones on electrical excitability of nerve cells belonging to the dorsal and ventral horns of the spinal cord induced by stimulating the sciatic nerve, as well as background and evoked activity in single dorsal horn cells were investigated during experiments on adrenalectomized spinal rats using intracellular techniques for recording potential. Both hormones were found to produce mainly facilitatory effects in adrenalectomized animals, manifesting in increased background activity rates in single cells and higher amplitude of field potentials in nerve cells of the dorsal half of the spinal cord. It was shown that neuronal response followed different patterns in the ventral half of the spinal cord gray matter under the action of gluco- and mineralocorticoids: dexamethasone and deoxycorticosterone respectively increased and reduced the amplitude of field potentials in the motoneuronal region. Findings indicate the modulatory influence of adrenal cortical hormones on the electrical activity of spinal cord neurons.Institute of Experimental Biology, Academy of Sciences of the Armenian SSR, Erevan. I. A. Orbeli Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 233–238, March–April, 1989.  相似文献   

10.
The possibility of the development of either the long-term posttetanic potentiation or the depression of focal evoked potentials in identified columns of the barrel somatic cortex of unanaesthetized rats during stimulation of their specific thalamocortical afferent fibers was shown. Phase-dependent potentiation developed after burst tetanization with the frequency of theta rhythm at the negative phase of a theta wave, whereas the stimulation at the positive phase produced the depression. Potentiation after continuous tetanization was observed only at the optimal selection of stimuli amplitude and duration. Excessively intense tetanization more frequently caused the depression of tested responses probably due to the involvement of recurrent inhibition.  相似文献   

11.
Sciatic nerve lesion in newborn rats is known to cause degeneration of a large number of axotomized motoneurones and spinal ganglion cells. Some of the surviving motoneurones exhibit abnormal firing properties and the projection pattern of central terminals of sensory neurones is altered. We report here on long-term changes in spinal cord reflexes in adult rats following neonatal nerve crush. In acutely spinalized and anaesthetized adult rats 4-6 months old in which the sciatic nerve had been crushed on one side at birth, the tibial nerve, common peroneal nerve or sural nerve were stimulated on the reinnervated and control side and reflex responses were recorded from the L5 ventral spinal roots. Ventral root responses (VRRs) to tibial and peroneal nerve stimulation on the side of the nerve lesion were significantly smaller in amplitude representing only about 15% of the mean amplitude of VRRs on the control side. The calculated central delay of the first, presumably monosynaptic component of the VRR potential was 1.6 ms on the control side while the earliest VRR wave on the side of the nerve lesion appeared after a mean central latency of 4.0 ms that seems too long to be of monosynaptic origin. These results suggest that neonatal sciatic nerve injury markedly alters the physiological properties and synaptic connectivity in spinal cord neurones and causes a marked depression of spinal cord responses to peripheral nerve stimulation.  相似文献   

12.
Electrical stimulation (50-150 microA, 0.5-ms duration, 3-300 Hz) was performed within three different regions (lateral, ventrolateral, and ventral) of the C2-C3 spinal cord of decerebrate, vagotomized, paralyzed, and artificially ventilated cats. Spinal cord stimulation sites were located by inserting monopolar or bipolar stimulating electrodes either at the dorsolateral sulcus or at least 1 mm medial or lateral to the sulcus. With stimulation at each site, alterations in respiratory rhythm, orthodromic phrenic nerve responses, and antidromic activation of medullary respiratory-modulated neurons were examined. Phrenic nerve responses to cervical spinal cord stimulation consisted of an early excitation (2-4 ms) and/or a late excitation (4-8 ms). Stimulation of the lateral region evoked the greatest amplitude early response and stimulation of the ventrolateral region produced the greatest late excitation. All three stimulus sites elicited antidromic activation of some respiratory-modulated neurons in the dorsal (DRG) and ventral respiratory groups (VRG). The lateral region was the least effective resetting site, and it had the highest incidence of antidromic activation of both DRG and VRG neurons. The ventrolateral region of the cervical spinal cord was the most effective resetting site, but it had the lowest incidence of antidromic activation of DRG respiratory-modulated neurons. In addition, resetting responses were observed with spinal cord stimulation at similar sites in the thoracic and lumbar spinal cord regions thought to be devoid of inspiratory bulbospinal axons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
M Jia  P G Nelson 《Peptides》1987,8(3):565-568
Monosynaptic excitatory post-synaptic potentials (EPSPs) evoked in spinal cord (SC) neurons by stimulation of dorsal root ganglion (DRG) neurons in cell cultures were reduced by perfusion application of the opiate peptide, Met-enkephalin (2-4 microM). In about 2/3 of cases examined, EPSPs evoked by stimulation of spinal cord cells were also reduced by Met-enkephalin. The effects were antagonized by concomitant perfusion with naloxone (1-2 microM) and recovered when perfusion with Met-enkephalin was stopped. Statistical analysis of synaptic responses indicated that the reduction of EPSP amplitude was due, at least to a major extent, to a decrease in presynaptic transmitter release.  相似文献   

14.
The effects of mechanoreceptor stimulation and subsequent ATP release in spinal cord injured and normal bladders was examined to demonstrate if spinal cord injury (SCI) modulates the basal or evoked release of ATP from bladder urothelium and whether intravesical botulinum toxin A (BTX-A) administration inhibits urothelial ATP release, a measure of sensory nerve activation. A Ussing chamber was used to isolate and separately measure resting and mechanoreceptor evoked (e.g. hypoosmotic stimulation) ATP release from urothelial and serosal sides of the bladder. Following spinal cord injury, resting urothelial release of ATP was ninefold higher than that of normal rats. Botulinum toxin A instillation did not significantly affect the resting release of ATP after spinal cord injury. Evoked ATP release following hypoosmotic stimulation was significantly higher in chronic spinal cord injured compared to normal rat bladders. However, botulinum toxin A treatment markedly reduced ATP release in spinal cord injured bladders by 53% suggesting that ATP release by mechanoreceptor stimulation, as opposed to basal release, occurs by exocytotic mechanisms. In contrast, there was no significant difference in basal or evoked ATP release from bladder serosa following spinal cord injury. Moreover, intravesical instillation of botulinum toxin A did not affect ATP release from the serosal side after spinal cord injury, suggesting that its effects were confined to the urothelial side of the bladder preparation. In summary: (1) increased release of ATP from the urothelium of spinal cord injured bladders may contribute to the development of bladder hyperactivity and, (2) mechanoreceptor stimulated vesicular ATP release, as opposed to basal non-vesicular release of ATP, is significantly inhibited in spinal cord injured bladders by intravesical instillation of botulinum toxin A. These results may have important relevance in our understanding of the mechanisms underlying plasticity of bladder afferent pathways following SCI.  相似文献   

15.
In the experiments on non-anesthetized flaxedil-immobilized cats it has been shown that the injection of leucin-enkephalin (1 mg) into the lateral ventricle of the brain is followed by the inhibition of evoked potentials in the ventrolateral columns of the spinal cord and of segmental interneuronal transmission in the spinal cord as well as by the reduction of the amplitude of potentials in the S I zone of the brain cortex induced by the sciatic nerve stimulation. Naloxone (1 mg/kg, i.v.) prevented the effects of leucin-enkephalin. Methysergide pretreatment (2.5 mg/kg, i.p.) led to a decrease of leucin-enkephalin effect on the interneuronal transmission in the spinal cord. Leucin-enkephalin failed to change the amplitude of polysynaptic potentials of glosso-mandibular reflex integrated at the brain stem level.  相似文献   

16.
A compartmental model of a terrapin motoneuron has been set up to compute membrane potential variations associated with synaptic input at different locations or with antidromic invasion. Membrane potential distributions obtained in that way were used to compute field potentials by means of a volume conduction formalism. The model was used to simulated field potentials measured in the spinal cord in response to stimulation of a muscle nerve with the intention to discriminate between different activation hypothesis for the generation of the spinal cord potential. Extracellular potentials calculated with an excitatory input distributed over the whole dorsal dendritic tree were found to give better reconstruction when compared with excitation restricted to the distal part of the dorsal dendrites, or with somatic inhibition.  相似文献   

17.
Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.  相似文献   

18.
The effects of electrically stimulating different groups of nerve fibers supplying the skin and muscle on evoked potentials in cat spinal cord dorsal columns were studied. Significant differences in the configuration of dorsal column potentials recorded in response to stimulation of these nerves were found. It was shown that cutaneous nerve unmyelinated fibres were connected to unmyelinated dorsal column fibers. In addition, excitation of cutaneous C-fibers lead to activation of dorsal column fibers with the maximum conduction velocity. The somatic nerve was only connected to myelinated dorsal column fibers, and excitation of its non-myelinated fibers did not cause other types of dorsal column fibers to be activated. It is suggested that the acceleration of cutaneous signal transmission in the dorsal column system may be brought about by the necessity for rapid warning of potentially harmful stimuli.Medical Institute, Russian Federation Ministry of Public Health, Nizhny Novgorod. Translated from Neirofiziologiya, Vol. 24, No. 5, pp. 625–635, September–October, 1992.  相似文献   

19.
Low amplitude high frequency waves (LHW) were investigated in normal and patient cervical somatosensory evoked potentials after median nerve stimulation (CSEP) in parallel to normal and patient conducted somatosensory evoked potentials (SEP) after tibial nerve stimulation. Normal recordings were obtained in five subjects undergoing dorsal root entry zone (DREZ) coagulation for pain relief. Patient recordings were obtained in 11 subjects suffering from either syringomyelia, spinal cord tumour, or both. All recordings were made intraoperatively from the dorsal spinal cord surface using the subpial recording technique. Normal CSEP showed typical triphasic potential starting with an initial P9, followed by N13 and a final positivity, P1. Numerous LHW were superimposed on slow triphasic potential. To improve the visibility of LHW, slow triphasic potential was removed from the original CSEP. Potentials thus obtained contained only high frequency components of CSEP, i.e. LHW. They were compared with conducted SEP after tibial nerve stimulation. Comparison revealed similarities in high frequency, low amplitude and general wave form, LHW thus showing characteristics of conducted potential. Duration was found to be significantly shorter than normal duration in both patient LHW (Student's t-test, P<0.0005) and patient conducted SEP (Student's t-test, P=0.064). A shorter duration was associated with worsening of configuration in patient LHW and patient conducted SEP. These changes of LHW could not be connected with distortion of N13 seen in patient CSEP. A shorter duration and worsening of configuration in patient LHW were most prominent in cases with a loss of vibration and posture senses, but were also observed in cases where only pain and temperature senses were affected. We therefore concluded that cuneate fascicle is the most likely generator of LHW, although the participation of other cervical long sensory tracts, e.g. spinothalamic tract, cannot be ruled out.  相似文献   

20.
We studied the effect of irradiation with Q-switched Nd:YAG laser light (1064 nm) on spinal cord dorsal column and dorsolateral white matter in anesthetized rats. To evoke a synchronous sensory input, the sciatic nerve was stimulated electrically and the resulting evoked spinal cord potential (SCP) recorded from the dorsal columns of the ipsilateral side. The waveshape of the SCP showed three components: an early positive peak (P1), representing the responses of the most rapidly conducting fibers, followed by two negative peaks (N1 and N2), which are mainly due to synaptic effects of the volley on dorsal horn cells located in dorsal grey matter. Laser irradiation at 50 mJ/pulse and above resulted in severe reduction in the amplitudes of N1 and N2. In contrast, there was either no reduction at all or only a slight decrease in the amplitude of P1. The selective loss of the synaptic field might be mediated by impairment of synaptic transmission or by loss of high threshold fiber input to dorsal horn neurones. In either event it is likely that the mechanism of the differential effects of laser irradiation on the components of the electrically evoked SCP is at least in part photothermally mediated, since intracord temperatures during laser application greatly exceeded the physiological range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号