首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute experiments to record spike activity from single fibers of the lateral line nerve of the Turkestan catfish revealed electroreceptor formations which, in their functional characteristics, were similar to the ampullated electroreceptors of other freshwater fish (the so-called small pit organs). The threshold intensity of the uniform electric field was 1 µV/cm. A voltage drop on the skin of the fish was shown to be an effective stimulus for the electroreceptors. A spike response to a change in the magnetic field was found for the first time in electroreceptors of freshwater fish. The threshold level of magnetic induction for a velocity of rotation of the permanent magnet of 1 m/sec was 2.9 · 10–4 T. Temperature and mechanical sensitivity of the electroreceptors was determined. The biological significance of electroreceptors of the Turkestan catfish is discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. M. I. Kalinin Andizhan Medical Institute, Ministry of Health of the Uzbek SSR. S. M. Kirov Murmansk Marine Biological Institute, Kola Branch, Academy of Sciences of the USSR, Dal'nie Zelentsy. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 508–516, September–October, 1980.  相似文献   

2.
  • 1.1. Transduction and transmission in catfish ampullary electroreceptors is mediated by sensory cells bearing microvilli, chemically mediating synapses, nerve terminals and one axon. Although some aspects still remain to be clarified, a number of properties have been found.
  • 2.2. Spike generation per seand the modulation of spike frequency by electrical stimuli behave differently with respect to a number of experimental factors.
  • 3.3. Stimulus current enters presumably through non-voltage-sensitive or non-specific ion channels.
  • 4.4. Fluctuations of the spike frequency may be used as a measure for proper functioning of this sense organ.
  相似文献   

3.
Spike discharges in nerve fibers, evoked by stimulation of electroreceptors by an electric field directed along the body axis (square pulses of current and a sinusoidal current) were recorded in the lampreyLamperta fluviatilis (L.). Excitation of electroreceptors was shown to arise through the action of the cathode. Minimal values of electric field at which appreciable changes took place in spike activity were 10–60 µV/cm for different nerve fibers. The optimal frequency range of sinusoidal electrical stimulation was 0.05–0.5 Hz. It is suggested that electroreceptors of the Agnatha (caudata) and of gnathostomatous cartilaginous fish share a common origin.Murmansk Marine Biological Institute, Kola Branch, Academy of Sciences of the USSR, Dal'nie Zelentsy, Murmansk Region. Translated from Neirofizioloigya, Vol. 16, No. 1, pp. 105–110, January–February, 1984.  相似文献   

4.
Summary The distribution of the neuropeptide substance P, which is considered to be a neurotransmitter or neuromodulator of the central nervous system, has been studied in the cutaneous electroreceptor organs (tuberous and ampullary organs) of 3 species of gymnotid fish: Apteronotus leptorhynchus, Eigenmannia virescens and Sternopygus sp. Immunohistochemical data have revealed that substance P is never present in the afferent fibers but is specifically localized in the electroreceptors of the three species examined. Substane P immunoreactivity is strictly localized in the sensory cells of the ampullary organs of all three species and in those of the tuberous organs of Apteronotus leptorhynchus and Sternopygus sp. In contrast, weak substance P immunoreactivity was observed only in certain tuberous sensory cells of Eigenmannia. Substance P immunoreactivity was also found in the accessory cells of certain organs: it was detected in the two types of accessory cells of the tuberous organs of Eigemmannia virescens, in the accessory cells type 2 of the tuberous organs of Sternopygus sp., and in all accessory cells of ampullary organs of Sternopygus sp. and Apteronotus leptorhynchus. In Sternopygus sp., positive staining was only evident if the substance P antibody was used at low concentration. Immunoreactivity for substance P in the sensory cells suggests that it has a transmitter or modulator function in these electroreceptors; the presence of substance P in the accessory cells remains to be explained.  相似文献   

5.
6.
7.
The small pit organ of the catfish,Silurus asotus, was examined by electron microscopy. On the basis of their fine structures and positions in the organ, five types of cells were distinguished: 1) receptor cell (RC), 2) granular (supporting) cell (GC), 3) non-granular (supporting) cell (NGC), 4) mantle cell (MC), and 5) channel cell (CC). Both GCs and NGCs were located between the RCs in the sensory epithelium and had similar fine structures except for striking differences in their apical cytoplasm. The GC contained numerous secretory granules and scattered tonofilaments. By contrast, the NGC was characterized by abundant tonofilaments in their apical cytoplasm where only a small number of secretory granules were counted. The NGC always occurred in direct contact with RCs, whereas the GC never did so. The MCs, forming the outermost part of the organ, were characterized by numerous tonofilaments in the cytoplasm and resembled the ordinary epidermal cells in their fine structure. The CCs lined the duct of the organ, and contained electron dense cytoplasm and rather degenerative organelles. Presumably the GCs contribute to secretion of the mucous substance to the ampullary lumen, whereas the NGCs deal with nutrition and insulation for the RCs.  相似文献   

8.
In the isolated sensory epithelium of the Plotosus electroreceptor, the receptor current has been dissected into inward Ca current, ICa, and superimposed outward transient of Ca-gated K current, IK(Ca). In control saline (170 mM/liter Na), with IK(Ca) abolished by K blockers, ICa declined in two successive exponential phases with voltage-dependent time constants. Double-pulse experiments revealed that the test ICa was partially depressed by prepulses, maximally near voltage levels for the control ICa maximum, which suggests current-dependent inactivation. In low Na saline (80 mM/liter), ICa declined in a single phase with time constants similar to those of the slower phase in control saline. The test ICa was then unaffected by prepulses. The implied presence of two Ca current components, the fast and slow ICa's, were further examined. In control saline, the PSP externally recorded from the afferent nerve showed a fast peak and a slow tonic phase. The double-pulse experiments revealed that IK(Ca) and the peak PSP were similarly depressed, i.e., secondarily to inactivation of the peak current. The steady inward current, however, was unaffected by prolonged prepulses that were stepped to 0 mV, the in situ DC level. Therefore, the fast ICa seems to initiate IK(Ca) and phasic release of transmitter, which serves for phasic receptor responses. The slow ICa may provide persistent active current, which has been shown to maintain tonic receptor operation.  相似文献   

9.
Whole body studies of Plotosus tandanus revealed that ampullary pores occur over the entire body of the fish, but are in higher concentrations in the head region. These pores give rise to a short canal (50-60 microm) produced by columnar epithelial cells bound together by tight junctions and desmosomes. At the junction of the canal and the ampulla, cuboidal epithelial cells make up the wall. The ampulla consists of layers of collagen fibers that surround flattened epithelial cells in the lateral regions and give rise to supportive cells that encase a small number of receptor cells (10-15). The ampullary wall comprises several types of cells that are adjoined via tight junctions and desmosomes between cell types. The ovoid receptor cells possess microvilli along the luminar apical area. Beneath this area, the cells are rich in mitochondria and rough endoplasmic reticulum. An unmyelinated neuron adjoins with each receptor cell opposite multiple presynaptic bodies. This form of microampulla has not been previously described within the Family Plotosidae.  相似文献   

10.
The tonic electroreceptors of the marine catfish Plotosus consist of a cluster of ampullae of sensory epithelia, each of which is an isolated receptor unit that is attached to the distant skin with only a long duct. The single-cell layered sensory epithelium has pear-shaped receptor cells interspersed with thin processes of supporting cells. The apical border of the receptor cells is joined to the supporting cells with junctional complexes. Single ampullae were excised and electrically isolated by an air gap. Receptor responses were recorded as epithelial current under voltage clamp, and postsynaptic potentials (PSP) were recorded externally from the afferent nerve in the presence of tetrodotoxin. The ampulla showed a DC potential of -19.2 +/- 6.5 mV (mean +/- SD, n = 18), and an input resistance of 697 +/- 263 K omega (n = 21). Positive voltage steps evoked inward currents with two peaks and a positive dip, associated with PSPs. The apical membrane proved to be inactive. The inward current was ascribed to Ca current, and the positive dip to Ca-gated transient K current, bot in the basal membrane of receptor cells. The Ca channels proved to have ionic selectivity in the order of Sr2+ greater than Ca2+ greater than Ba2+, and presumably they also passed outward current nonselectively. Double-pulse experiments further revealed a current-dependent inactivation for a part of the Ca current.  相似文献   

11.
Properties of catfish electroceptors were investigated by simultaneous recording of the skin potential and the activity of an afferent nerve. 1. The normal threshold stimulus intensity induces a potential amplitude of about 10 to 30 muV across the skin (Table I). 2. The average spike frequency in the nerve increases approximately with the logarithm of the stimulus intensity (Fig. 1). 3. The direct current restoring the receptor activity in calcium deficient media makes the skin potential more negative. 4. Presumably, not the skin potential itself but a difference between the skin potential and the e.m.f. generated by the receptor epithelium influences receptor functioning. 5. Amplitude and phase characteristics can be described by a filter circuit (Fig. 4 and 5).  相似文献   

12.
13.
14.
Unit responses in the acoustic-lateral region of the medulla to electrical and mechanical stimulation of the lateral line organs were investigated in acute experiments on curarized catfish. Of the total number of neurons 70% possessed spontaneous activity. An electrical stimulus evoked a tonic response both in spontaneously active and in "silent" cells. Three main types of firing pattern of the neurons were distinguished: fast-adapting, slow-adapting, and grouped. As regards the relation of the neurons to polarity of the stimulus they were subdivided into two groups. The thresholds of unit responses to electrical stimulation varied considerably: from 2.5·10–9 to 5·10–12 A/mm2. The effect of intensity of the electrical stimulation on unit responses in the medulla is analyzed. The precise dependence of on- and off-responses of each neuron on stimulus intensity of any polarity was determined. The neurons were shown to be sensitive to both electrical and mechanical stimuli. It is postulated that this phenomenon is due to convergence of impulses from electrical and mechanical receptors of the lateral line on the neurons. The properties of the central neurons are compared with those of the peripheral electroreceptor system in catfish.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 156–163, March–April, 1973.  相似文献   

15.
16.
Catfish detect and identify invisible prey by sensing their ultra-weak electric fields with electroreceptors. Any neuron that deals with small-amplitude input has to overcome sensitivity limitations arising from inherent threshold non-linearities in spike-generation mechanisms. Many sensory cells solve this issue with stochastic resonance, in which a moderate amount of intrinsic noise causes irregular spontaneous spiking activity with a probability that is modulated by the input signal. Here we show that catfish electroreceptors have adopted a fundamentally different strategy. Using a reverse correlation technique in which we take spike interval durations into account, we show that the electroreceptors generate a supra-threshold bias current that results in quasi-periodically produced spikes. In this regime stimuli modulate the interval between successive spikes rather than the instantaneous probability for a spike. This alternative for stochastic resonance combines threshold-free sensitivity for weak stimuli with similar sensitivity for excitations and inhibitions based on single interspike intervals.  相似文献   

17.
The evolution of the neuropeptidic expression of Substance P has been investigated with immunohistochemistry in the cutaneous electroreceptors, tuberous organs, during ontogenetic development of Apteronotus leptorhynchus. In the present data, antiSP antiserum has been applied to serial sections of Apteronotus leptorhynchus larvae obtained from several egg layings. Larvae were taken during development from hatching up to one hundred days old. SP immunoreactivity appeared just after hatching, in the epidermal zones which give rise to cutaneous sense organs. Four days after hatching, the tuberous organs are differentiated and immunoreactivity was observed in these organs, in both sensory cells and accessory cells. From day 30 after hatching, there was a regular decrease in the number of tuberous organs showing labelled accessory cells, and one hundred days later only 8% of tuberous organs had immunoreactive accessory cells. The adult accessory cells were no longer labelled with anti-SP antiserum. The results showed that in Apteronotus leptorhynchus, the epidermal structures which give rise to the cutaneous sensory organs were immunoreactive at a very early stage of development; this suggests that SP could have an effect upon their differentiation.  相似文献   

18.
19.
The pit organs of elasmobranchs (sharks, skates and rays) are free neuromasts of the mechanosensory lateral line system. Pit organs, however, appear to have some structural differences from the free neuromasts of bony fishes and amphibians. In this study, the morphology of pit organs was investigated by scanning electron microscopy in six shark and three ray species. In each species, pit organs contained typical lateral line hair cells with apical stereovilli of different lengths arranged in an “organ‐pipe” configuration. Supporting cells also bore numerous apical microvilli taller than those observed in other vertebrate lateral line organs. Pit organs were either covered by overlapping denticles, located in open grooves bordered by denticles, or in grooves without associated denticles. The possible functional implications of these morphological features, including modification of water flow and sensory filtering properties, are discussed. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Epaulette sharks Hemiscyllium ocellatum in three treatments, pit organs (free neuromasts) ablated, sham-operated and normal ( n  = 8 for each treatment), showed a significant preference for facing upstream in a flume ( P  < 0·05). There were no significant differences in the mean angles or angular variances among treatments. Individuals with ablated pit organs, however, spent significantly less time moving around than controls ( P  < 0·05), suggesting that pit organs contributed to motivation for activity. Pit organs do not appear to make an important contribution to rheotaxis in H. ocellatum . It is suggested that this may be due to structural differences in the pit organs of H. ocellatum compared with other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号