首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Horizontal cells of the L-type in the turtle retina were polarized by passing a steady current through extracellular electrodes. In this way controlled changes in membrane potential can be effectively produced in the region of the cell body. The hyperpolarization response of the horizontal cell to light is reversed on depolarization of the cell membrane to about the zero level. Consequently, the response of the horizontal cell to light is the result of a decrease in the EPSP, the magnitude of which remains constant in darkness. The resistance of the cell membrane depends on the membrane potential. Hyperpolarization of horizontal cells produced by bright light or by passage of a steady current was accompanied by a decrease in their membrane resistance. This nonlinearity evidently depends on the properties of the nonsynaptic membrane of the horizontal cells, whose resistance falls considerably on hyperpolarization. The results are qualitatively similar to those demonstrated previously [10] in an investigation of the horizontal cells of the fish retina.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 423–431, July–August, 1973.  相似文献   

2.
Several inhibitors were applied to filamentous gametophytes of the fern Onoclea sensibilis in the attempt to characterize how electrical phenomena might be involved in the tip-swelling response to blue light (BL). The membrane potential of the apical cell in the typical fern filament rests near-120 mV in darkness, but irradiation with blue light causes the membrane to hyperpolarize at a steady rate of 2.6 mV min-1 until it reaches a new stable value between-130 and-135 mV. In darkness, 10-4M salicylhydroxamic acid (SHAM), an inhibitor of BL-mediated absorbance changes in putative plasma-membrane fractions from maize coleoptiles, has no observable effects on the membrane potential or on filamentous growth. A SHAM pretreatment before BL irradiation causes approx. 70% inhibition of the membrane hyperpolarization as well as a comparable reduction in the growth response; however, SHAM has no effect in experiments where its application follows the onset of the electrical response. Exposing the filaments to 10-5M Na3VO4, an inhibitor of the plasma-membrane ATPase, depresses the membrane potential in darkness. Depending on the timing of application, Na3VO4 prevents the initiation of or blocks further increases in the BL-mediated hyperpolarization. Application of Na3VO4 causes an immediate cessation of growth in both darkness and BL. These findings implicate the involvement of a plasmalemma-bound flavin-cytochrome complex and ATP-driven proton pump in the initial events of this growth response to blue light.  相似文献   

3.
Phototropin-dependent chloroplast movement is essential to the photosynthetic acclimation of mesophyll cells to incident light. Chloroplast movement involves many cellular actors, such as chloroplast-associated actin filaments and proteins that mediate signalling between phototropins and chloroplast motion. In the past few years, genetic approaches have identified several key proteins but the intrinsic mechanisms of the signalling cascade, such as phosphorylation events, remain undefined. Here, we took advantage of phosphoproteomics to examine the involvement of protein phosphorylation in chloroplast movement in darkness or under high light, at different CO2 mole fractions (100, 380 or 1,000 ppm) to vary photosynthetic activity. Amongst the 100 relevant identified phosphopeptides, 19 (corresponding to 8 proteins) were differentially phosphorylated in darkness vs. high light. There was no significant CO2 effect on the observed phosphorylation patterns. We further characterized the phosphorylation sites in THRUMIN1, which is believed to be crucial for the attachment of chloroplast-associated actin filaments to the plasma membrane and thus for chloroplast movements. The mutant thrumin1 was complemented with a mutated protein in which phospho-sites were substituted to a phosphomimetic (Asp) or a non-phosphorylatable (Ala) residue. While the phosphomimetic substitution altered the chloroplast response in the light only, both light and dark responses were altered with the non-phosphorylatable substitution. Our data suggest a key role of protein phosphorylation, including that of THRUMIN1, in the light/dark control of chloroplast movements.  相似文献   

4.
The membrane potential of horizontal cells of the retina was clamped by uniform polarization of the layer of these cells by a current passed through extracellular electrodes. The volt-ampere characteristic curve of the synaptic membrane of the horizontal cells in some cases had segments with negative slope. With a sharp change in the level of voltage clamping the time taken for the resistance of the membrane to change was under 20 msec. Comparison of responses to photic stimulation recorded with and without voltage clamping showed that participation of the nonsynaptic membrane in the generation of responses to photic stimulation can affect their shape substantially.Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 402–407, July–August, 1977.  相似文献   

5.
On the basis of the syncytial structure of the layer of horizontal cells of the fish retina, a method is developed which effectively shifts the membrane potential of cells by means of an electrical current. It is shown that the response of L-type horizontal cells to light and electrical stimulation of the retina is reversed when the membrane of the horizontal cells is depolarized by a direct current. The equilibrium potential of the cells was near the zero level. Consequently, the depolarization response of the horizontal cells to disconnection of the light and to electrical stimulation of the retina is an excitatory postsynaptic potential, whereas hyperpolarization of the horizontal cells to light is a decrease of this potential. It is shown that the membrane of fish horizontal cells have pronounced nonlinear properties: in the case of strong depolarization and especially in the case of hyperpolarization its impedance drops markedly. The latter probably occurs due to an increase of the permeability of the nonsynaptic membrane of the horizintal cells for K+. This can also explain the decrease of membrane impedance during the hyperpolarization response of the horizontal cells to bright light. The available data indicate the presence of regenerative properties of the membrane of horizontal cells.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 89–98, January–February, 1971.  相似文献   

6.
The effect of light on the size of intact protoplasts isolated from the primary leaves of etiolated Triticum aestivum was studied. A 2-min red-light irradiation in the presence of 1 mM KCl was sufficient to cause a swelling of protoplasts compared with those maintained in darkness. The effect was photoreversible by far-red light over two light cycles, indicating the involvement of phytochrome. At 4°C, escape from reversibility occurred between 2 and 5 min after the exposure to red light. In exposure-response experiments, 20 s red light at 27 μmol m-2s-1 was sufficient to saturate the response. Exogenous gibberellic acid added in darkness in the presence of KCl also induced protoplast swelling. Gibberellins may act as an intermediate in the phytochrome-induced swelling of protoplasts.  相似文献   

7.
Uridine incorporation into the shoot apex of the short-day plantChenopodium rubrum was investigated during a 16 h period of darkness and the following transfer to light. Uridine incorporation during this single inductive cycle was compared to incorporation under non-inductive conditions of continuous light. After transfer of the plants from light to darkness RNA synthesis was reduced to about half after the first two hours. This occurred not only when the plants were precultivated in continuous light but also after an interruption of the dark period by light for 31/2 h. The low level of uridine incorporation was maintained for the whole duration of the dark period. Incorporation regained its initial level after exposure of the plants to light irrespective of the duration of the preceding dark period. After this immediate rise of uridine incorporation in plants transferred from darkness to light a slight temporary decrease was observed in light. In darkness the decrease of incorporation into the nucleoli was still more marked than the reduction of overall incorporation. After the termination of the dark period incorporation into the nucleolus rose slowly and extranucleolar incorporation was relatively enhanced during the first 10 h of light in induced plants. The fluctuations of RNA synthesis observed in the shoot apex during photoperiodic treatment may be regarded as a necessary condition for the transition from the vegetative to the reproductive state.  相似文献   

8.
Inhibition in neurons of the lizard olfactory bulb was investigated by intracellular recording. The hyperpolarization arising in the neurons after the spike in the response to orthodromic and antidromic activation is similar in composition and reflects the development of early and late IPSPs, differing from one another in latency, duration, and mechanism of generation. The early IPSP is evidently generated by the functioning of dendrodendritic synapses, formed by dendrites of the interglomerular cell on the membrane of the apical dendrites of the secondary neurons, whereas synapses generating the late IPSP are located on the basal dendrites and are formed by endings of the granular cells. The mechanisms of generation of the early and late IPSPs in the secondary neurons are discussed. A classification of neurons of the lizard olfactory bulb is given on the basis of analysis of their intracellular activity.  相似文献   

9.
Cycloheximide, ethionine,p-fluorophenylalanine, 6-azauracil, 5-diazouracil and vanillin, applied at relatively high concentrations, retarded the yellowing of kale (Brassica oleracea L. var.acephala) leaf discs in darkness, and stimulated it in light. All the compounds inhibited protein synthesis and retarded protein breakdown. Cycloheximide,p-fluorophenylalanine, diazouracil and vanillin also inhibited the incorporation of uracil-14C into RNA of senescing discs. Abscisic acid and 2-chloroethylphosphonic acid accelerated yellowing both in darkness and in light and stimulated the protein breakdown in senescing discs. Abscisic acid inhibited the chlorophyll, protein and RNA synthesis in detached, greening cucumber cotyledons. There was no direct correlation between the activity of a given compound as an inhibitor of yellowing in darkness, and the degree of inhibition of RNA synthesis. The arrest of yellowing in darkness is possibly a consequence of the retarded rate of protein breakdown. Yellowing in light, on the contrary, is dependent on the actual rate of protein synthesis.  相似文献   

10.
Summary Intracellular potentials from the isolated dark-adapted pineal organ ofPhoxinus phoxinus were recorded by using glass microelectrodes. The majority of cells had resting potentials of 20 to 35 mV and responded to light with intensitygraded hyperpolarizations. Voltage intensity curves of responses to brief flashes followed the hyperbolic tangent functionV/V max=In/(I n + n ).The latency of onset for responses to light stimuli near threshold was 400 ms and decreased with saturating flashes to about 50 ms. The membrane resistance decreased during the hyperpolarization. Spectral sensitivity measurements for these cells exhibited curves with max=530 nm. Intracellular dye injection unequivocally identified this cell type as a photoreceptor cell.A second cell type with resting potentials between 30 to 40 mV exhibited a biphasic response pattern to light stimulation. The cell depolarized with dim light flashes and hyperpolarized with bright flashes. The amplitude of the hyperpolarizing component showed no saturation over an intensity range of 5 log units. Latencies and rise times were comparable to those of photoreceptor potentials. Spectral sensitivity curves peaked at longer wavelengths ( max=550 nm) than the action spectra of photoreceptors ( max=530 nm). It is assumed that this rare cell type represents a small class of pineal interneurons.  相似文献   

11.
The electrophysiological membrane parameters of the unicellular green alga Eremosphaera viridis were determined using an improved computer-supported single-microelectrode technique. These cells developed an average membrane potential of-150 mV in the light and a specific resistance of 1 Ω m2 with an external potassium concentration of 1.1 mM and pH 5.5. In the dark, many cells showed a less polarized potential of 30–40 mV and a smaller membrane resistance. At potassium concentrations in the external medium higher than 1 mM, the membrane potential strongly depends on the external potassium content apart from a small electrogenic component. At concentrations lower than 1 mM K+, a dependence of the membrane potential upon external potassium concentrations could not be verified. Inserting the internal ion activities in the Goldmann equation shows that, in this range, the proton conductance seems to be predominant over the potassium conductance. Transient changes in the membrane potential and in the membrane resistance were observed after switching off the light, after addition of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea or N,N′-dicyclohexylcarbodiimide, after a sudden decrease in temperature, and after current pulses. These changes resemble the action potentials (AP) found in other plant cells (Chara, Acetabularia). On average, the AP has a delay period of 5.1 s and a duration of 43.8 s showing a sudden decrease and a slower regeneration. The voltage peak during an AP followed exactly the Nernst potential of potassium over a range of external potassium concentrations from 5 μM to 0.2 M. This is true for depolarization or hyperpolarization, depending on the external K+-concentration. Tetraethylammonium-hydrogensulphate, a rather specific inhibitor of K+ channels in nervous cells, suppressed the AP. The correlation of the appearance of the AP with a short-term opening of potassium channels in the membrane of Eremosphaera is discussed.  相似文献   

12.
The influence of inhibitors of energy metabolism (2-deoxy-D-glucose, monoiodoacetate, KCN) as well as various substrates for respiration (sodium acetate, glycine, glutamine, α-ketoglutarate, pyruvate) were investigated with respect to the effect of blue light (450 nm) on contractile behaviour of plasmodial strands of Physarum polycephalum. When the energy metabolism is not experimentally modified, blue light induces a prolongation of the period of the contraction-relaxation cycle. This effect appears within 2–3 min and seems to represent the primary reaction of this organism to blue light. Inhibition of respiration by KCN completely abolished this response to blue-light irradiation. In contrast, an impediment of glycolysis enhanced the effect. This indicates that the reaction to blue light is related to respiration, i.e., to the function of mitochondria. Among different substrates for respiration only α-ketoglutarate combined with pyruvate and applied in the presence of inhibitors of glycolysis showed an enhancement of the photoresponse, i.e., a prolongation of the period and an increase of the amplitude of the force oscillations. This indicates that the pyruvate and α-ketoglutarate-dehydrogenase complexes functioning in mitochondrial respiration are involved in the primary blue-light reaction of plasmodia of Physarum polycephalum.  相似文献   

13.
The nucleic acid (NA) fractions were analyzed in cotyledons and apical buds ofChenopodium rubrum plants by means of acrylamide electrophoresis at the end of the dark period of a different number of photoperiodic cycles or after transfer of the plants to light for 4 h subsequent to the termination of the dark period. The plants were labelled with32P three hours prior to sampling. The uptake of32P into the cotyledons was higher in light than in darkness in all cases, however, it was not in correlation with32P incorporation into the NA fractions. After one dark period lasting 8 or 16 h NA synthesis in light did not increase in comparison with darkness. After two or more photoperiodic cycles NA synthesis was higher in light than in darkness irrespective of whether the dark period lasted 8 or 16 h. NA synthesis was distinctly highest after two inductive cycles lasting 16 h. In buds NA synthesis was slightly shifted in favour of ribosomal RNA as compared with cotyledons. In the cotyledons the increase in light was mainly duo to a raise of rRNA synthesis whereas in the buds synthesis of sRNA and DNA increased, as well.  相似文献   

14.
The three horizontal cells of the lobula plate of the blowflyCalliphora erythrocephala were studied anatomically and physiologically by means of cobalt impregnations and intracellular recordings combined with Procion and Lucifer Yellow injections. The cells are termed north, equatorial and south horizontal cell (HSN, HSE, HSS) and are major output neurons of the optic lobe. 1. The dendritic arborizations of the HSN, HSE, HSS reside in a thin anterior layer of the lobula plate and extend over the dorsal, equatorial and ventral parts of this neuropil, respectively. Due to the retinotopic organization of the optic lobe, these parts correspond anatomically to respective regions of the ipsilateral visual field. Homologue horizontal cells in both lobula plates of the same animal and in different animals are highly variable with respect to their individual dendritic branching patterns. They are extraordinarily constant, on the other hand, with regard to the position and size of their dendritic fields as well as their dendritic branching density distributions. Each cell covers about 40% of the total area of the lobula plate and shows the highest dendritic density near the lateral margin of the neuropil which subserves the frontal eye region. The axons of the horizontal cells are relatively short and large in diameter; they terminate in the posterior ventrolateral protocerebrum. 2. The horizontal cells are directionally selective motion sensitive visual interneurons responding preferentially to progressive (front to back) motion in the ipsilateral visual field with graded depolarization of their axons and superimposed action potentials. Stimulation with motion in the reverse direction leads to hyperpolarizing graded responses. The HSE and HSN are additionally activated by regressive motion in the contralateral visual field.  相似文献   

15.
Intracellular electrodes were inserted into single photoreceptor units of the excised lateral eye of Limulus, and preparations were selected from which graded receptor potentials of relatively large amplitude could be recorded in response to light stimuli. The experimental data indicated that the graded receptor potential does not arise solely from a collapse of the resting membrane potential of the sensory cells of the eye, since a reversal of polarity of the photoreceptor unit could be demonstrated when the eye was stimulated by light. In the recovery period following stimulation, characteristic changes in the so-called resting potential were recorded. It is suggested that these changes in the so-called resting membrane potential are electrical signs of recovery processes occurring in the photoreceptor, because the potential changes were recorded when the eye was in darkness and because the magnitudes of the potential changes were a predictable function of the intensity and duration parameters of the preceding light stimulus.  相似文献   

16.
It has been concluded in the preceding papers (Egelhaaf, 1985a, b) that two functional classes of output elements of the visual ganglia might be involved in figure-ground discrimination by relative motion in the fly: The Horizontal Cells which respond best to the motion of large textured patterns and the FD-cells which are most sensitive to small moving objects. In this paper it is studied by computer simulations (1) in what way the input circuitry of the FD-cells might be organized and (2) the role the FD-cells play in figure-ground discrimination. The characteristic functional properties of the FD-cells can be explained by various alternative model networks. In all models the main input to the FD-cells is formed by two retinotopic arrays of small-field elementary movement detectors, responding to either front-to-back or back-to-front motion. According to their preferred direction of motion the FD-cells are excited by one of these movement detector classes and inhibited by the other. The synaptic transmission between the movement detectors and the FD-cells is assumed to be non-linear. It is a common property of all these model circuits that the inhibition of the FD-cells induced by large-field motion is mediated by pool cells which cover altogether the entire horizontal extent of the visual field of both eyes. These pool cells affect the response of the FD-cells either by pre- or postsynaptic shunting inhibition. Depending on the FD-cell under consideration, the pool cells are directionally selective for motion or sensitive to motion in either horizontal direction. The role the FD-cells and the Horizontal Cells are likely to play in figure-ground discrimination can be demonstrated by computer simulations of a composite neuronal model consisting of the model circuits for these cell types. According to their divergent spatial integration properties they perform different tasks in figure-ground discrimination: Whereas the Horizontal Cells mainly mediate information on wide-field motion, the FD-cells are selectively tuned to efficient detection of relatively small targets. Both cell classes together appear to be sufficient to account for figure-ground discrimination as it has been shown by analysis at the behavioural level.  相似文献   

17.
Changes in ionic conductance lying at the basis of nonlinearity of the current-voltage characteristic curve of the cell (nonsynaptic) membrane of horizontal cells were studied in experiments on the goldfish and turtle retina. All measurements were made during blocking of synaptic transmission by bright light or Co++. An increase in the K+ concentration led to depolarization and to a reduction of the steepness of the hyperpolarization branch of the current-voltage curve, whereas a decrease in K+ had the opposite effect. Changes in the Cl or Na+ concentrations had no significant effect on membrane potential or on the shape of the current-voltage curve. The principal potential-forming ion in the horizontal cells is thus K+; conductance for Cl is absent or very low, and conductance for Na+ also is evidently small. In the presence of Ba++ (2–5 mM) the steepness of the hyperpolarization branch of the current-voltage curve was increased and the whole curve became more linear. It is concluded that nonlinearity of the current-voltage curve of the horizontal cell membrane is due mainly to potential-dependent potassium channels, whose conductance increases during hyperpolarization; this increase in conductance is blocked by Ba++. An increase in the Ca++ concentration to 20 mM led to an increase in steepness of the depolarization branch of the current-voltage curve, suggesting that depolarization increases membrane conductance for Ca++.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 531–539, September–October, 1981.  相似文献   

18.
Interaction between horizontal cells of the turtle retina was studied by two microelectrodes (polarizing and recording), inserted into different cells at different distances apart. The presence of a direct electrical connection was demonstrated between the L cells of the same type (I, with large, and II, with small receptive fields). Its magnitude depends on the conditions of illumination and the level of the membrane potential, possibly because of the properties of the subsynaptic and nonsynaptic membranes of the horizontal cells. No direct electrical connection exists between L cells of different types. However, hyperpolarization of the type I cells through the microelectrode or by stimulation with a circle of light evoked depolarization in the type II cells. This indirect connection between the horizontal cells, also dependent on the conditions of illumination, can probably be explained by feedback to these cells from the photoreceptors. Polarization of L cells of both types had no effect on horizontal cells of color type.  相似文献   

19.
We describe a method based on fluorescence-lifetime imaging microscopy (FLIM) to assess the fluidity of various membranes in neuronal cells at different stages of development [day 12 (E12) and day 16 (E16) of gestation]. For the FLIM measurements, we use the Laurdan probe which is commonly used to assess membrane water penetration in model and in biological membranes using spectral information. Using the FLIM approach, we build a fluidity scale based on calibration with model systems of different lipid compositions. In neuronal cells, we found a marked difference in fluidity between the internal membranes and the plasma membrane, being the plasma membrane the less fluid. However, we found no significant differences between the two cell groups, E12 and E16. Comparison with NIH3T3 cells shows that the plasma membranes of E12 and E16 cells are significantly more fluid than the plasma membrane of the cancer cells.  相似文献   

20.
Flow cytometric and light/fluorescence microscopic analysis of murine erythroleukemic cells (MELC) and electron microscopic investigation of porcine microsomal membrane preparations suggest that tributyltin (TBT) toxicity is mediated through fixation processes (protein denaturation, crosslinking, and so on) within the plasma membrane/cytoplasm complex. This hypothesis was derived from the following observations:
  1. Exposure of the MELC to micromolar concentrations of TBT results in increased resistance to detergent-mediated cytolysis;
  2. Exposure of porcine renal microsomal membrane preparations to similar concentrations results in inhibition of vanadate-mediated crystallization of Na+,K+-ATPase, a process requiring protein mobility within the membrane;
  3. Flow cytometric and fluorescence microscopic analyses indicate that MELC exposed to submicromolar concentrations of TBT exhibit increased cellular carboxyfluorescein retention; and
  4. Nuclei prepared from TBT-treated cells by detergent-mediated cytolysis exhibit increased axial light loss, 90° light scatter, fluorescein isothiocyanate fluorescence, and the presence of adherent protein-aceous tags. The DNA distribution histogram of such nuclei also is perturbed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号