首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infidelity of DNA synthesis by reverse transcriptase   总被引:3,自引:0,他引:3  
The fidelity of purified DNA polymerase from avian myeloblastosis virus in precisely copying polynucleotide templates was determined. With poly (dA-dT) · poly (dA-dT) as a template, one molecule of the incorrect basepaired nucleotide (dCTP) is incorporated for every 6000 nucleotides polymerized. When copying the ribo strand of poly (rA) · poly (dT) the error rate is approximately one in 600. It is suggested that the enzyme makes similar errors invivo and thus could be mutagenic.  相似文献   

2.
The high error rate characteristic of DNA polymerases from RNA tumor viruses has permitted measurements on the simultaneous incorporation of complementary and noncomplementary nucleotides during DNA synthesis. For example, avian myeloblastosis virus DNA polymerase incorporates 1 molecule of dCMP for approximately 500 molecules of dTMP polymerized using polyriboadenylic acid as a template. The parallel incorporation of complementary and noncomplementary nucleotides afer gel filtration of avian myeloblastosis virus DNA polymerase indicates that the observed fidelity is catalyzed by the polymerase itself. Nearest neighbor analysis of the product indicates that noncomplementary nucleotides are incorporated as single base substitutions. The incorporation of the noncomplementary dCMP is not reduced by a 20-fold greater amount of the complementary nucleotide, dTTP. Conversely, the concentration of the noncomplementary nucleotides does not effect the rate of incorporation of the complementary nucleotide. A similar lack of competition between complementary dGTP and noncomplementary dATP is exhibited using poly(rC)-oligo(dG) as a template-primer. Furthermore, there was no detectable competition between the different noncomplementary nucleotides. Possible explanations for this lack of competition are considered.  相似文献   

3.
4.
DNA polymerase from Escherichia coli (Pol I) and from avian myeloblastosis virus (AMV polymerase) were compared for the manner in which they catalyze the polymerization of deoxynucleotides upon a variety of synthetic and natural templates. It was found that the rates of nucleotide incorporation with different natural RNAs were similar. Both polymerases have an associated RNA endonuclease which hydrolyses RNA templates containing double-stranded regions. This activity depends on the presence of the complementary deoxynucleoside triphosphates, and/or polymerization. Both enzymes copy natural DNA, which has been sonicated and treated with E. coli exonuclease III, at the same rate. However, avian myeloblastosis virus DNA polymerase, which has no associated DNA exonuclease activity, is unable to copy double-stranded DNA and copies DNAase-treated DNA only 10% as well as Pol I. Pol I copied all the homopolymers investigated at a greater rate than AMV polymerase with the exception of poly(C) · oligo(dG). However, the initial rate of chain elongation, as measured by gel electrophoresis, was the same for the two polymerases, approximately 300 nucleotides incorporated per minute. Template saturation experiments show a stoichiometric relationship between template and enzyme at optimal rates of nucleotide incorporation which suggests that all enzyme molecules are potential catalysts. Enzyme saturation experiments indicate that not all enzyme molecules are “effectively” bound to a template. Fewer AMV polymerase than Pol I molecules are functionally bound to a particular template. From these data, it is concluded that the two polymerases elongate DNA chains in a similar way and that the manner in which the polymerases bind to a particular template accounts for the discrepancies found in their turnover numbers.  相似文献   

5.
Infidelity of DNA synthesis: a general property of RNA tumor viruses   总被引:2,自引:0,他引:2  
We have determined the frequency with which a non-complementary base-paired nucleotide is incorporated by the DNA polymerase of Rauscher leukemia virus using synthetic polynucleotides as templates. The observed error rates are very similar to those error rates previously reported with the DNA polymerase from avian myeloblastosis virus. This similarity suggests that a high level of infidelity may be a common characteristic of RNA tumor viruses. This high error rate may be relevant to the mode of action of the polymerase during carcinogenesis.  相似文献   

6.
We measured the insertion fidelity of DNA polymerases alpha and beta and yeast DNA polymerase I at a template site that was previously observed to yield a high frequency of T----G transversions when copied by DNA polymerase beta but not by the other two polymerases. The results provide direct biochemical evidence that base substitution errors by DNA polymerase beta can result from a dislocation mechanism governed by DNA template-primer misalignment. In contrast to DNA polymerase beta, neither Drosophila DNA polymerase alpha nor yeast DNA polymerase I appear to misinsert nucleotides by a dislocation mechanism in either the genetic or kinetic fidelity assays. Dislocation errors by DNA polymerase beta are characterized primarily by a substantial reduction in the apparent Km for inserting a "correct," but ultimately errant, nucleotide compared to the apparent Km governing direct misinsertion. For synthesis by DNA polymerase beta, dislocation results in a 35-fold increase in dCMP incorporation opposite template T (T----G transversion) and a 20-35-fold increase in dTMP incorporation opposite T (T----A transversion); these results are consistent with parallel genetic fidelity measurements. DNA polymerase beta also produces base substitution errors by direct misinsertion. Here nucleotide insertion fidelity results from substantial differences in both Km and Vmax for correct versus incorrect substrates and is influenced strongly by local base sequence.  相似文献   

7.
8.
9.
D K Dube  L A Loeb 《Biochemistry》1976,15(16):3605-3611
The association of avian myeloblastosis virus (AMV) DNA polymerase with polynucleotide templates during catalysis has been studied. During the course of polymerization, different template-primer complexes were added and the ability of the enzyme to switch from one polynucleotide template to another was determined. At 37 degrees C as well as at 4 degrees C, the polymerase is able to switch from certain template-primer complexes to others. For example, the addition of poly(A)-oligo(dT) during the course of synthesis with poly(C)-oligo(dG) results in the immediate cessation of dGMP polymerization and the start of dTMP polymerization without any lag. Early during the course of polymerization, the size of the product, as determined by alkaline sucrose gradient centrifugation, is, in part, a function of the ratio of the template-primer complex to the enzyme. These cumulative experiments indicate that catalysis on polynucleotide templates with avian myeloblastosis virus DNA polymerase under the conditions tested is not processive in a classical sense. Similar to cellular DNA polymerases the enzyme can shift from one template-primer to another. Using autoradiography after gel electrophoresis to estimate the product size, it can be calculated that the enzyme switches from one template to another within 0.25 min at 37 degrees C which corresponds to the incorporation of greater than 25 nucleotides. At 4 degrees C, switching can be calculated to occur in less than three nucleotide addition steps. Thus, with certain homopolymers, conditions can be found by which AMV DNA polymerase can switch from one template-primer complex to another, perhaps after each nucleotide addition step.  相似文献   

10.
11.
Liquid hybridization of progressively smaller fragments (35S, 27S, 15.5S, 12.5S, and 8S) of poly(A)-selected avian myeloblastosis virus RNA with excess DNA from leukemic chicken myeloblasts revealed that all sizes of RNA contained sequences complementary to both slowly and rapidly hybridizing cellular DNA sequences. Apparently, the RNA sequences which hybridize rapidly with excesses of cellular DNA are not restricted to any one region of the avian myeloblastosis virus 35S RNA. Instead, they appear to be randomly distributed over the entire 35S avian myeloblastosis virus RNA molecule with some positioned within 200 nucleotides of the poly(A) tract at the 3' end of the RNA.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Caffeine was found to inhibit RNA-dependent DNA polymerase activity of Rauscher leukemia virus when endogenous viral RNA and poly(rA)·(dT)12–18 were used as templates. Similar results were also obtained with purified RNA-dependent DNA polymerase (deoxynucleoside triphosphate; DNA nucleotidyl transferase; EC 2.7.7.7) from avian myeloblastosis virus (AMV) utilizing 70S and 35S RNA of AMV, poly(rA)·(dT)12–18, globin mRNA and activated calf thymus DNA as templates. The “caffeine effect” was evident only when it was present during the initiation of polymerization reaction. Increasing the template concentration in the reaction mixture partly reversed the effect of caffeine. Of the analogs of caffeine tested, only theophylline inhibited AMV DNA polymerase, whereas aminophylline showed no effect.  相似文献   

19.
20.
The role of ribonucleic acid (RNA) in deoxyribonucleic acid (DNA) synthesis with the purified DNA polymerase from the avian myeloblastosis virus has been studied. The polymerase catalyzes the synthesis of DNA in the presence of four deoxynucleoside triphosphates, Mg(2+), and a variety of RNA templates including those isolated from avian myeloblastosis, Rous sarcoma, and Rauscher leukemia viruses; phages f2, MS2, and Qbeta; and synthetic homopolymers such as polyadenylate.polyuridylic acid. The enzyme does not initiate the synthesis of new chains but incorporates deoxynucleotides at 3' hydroxyl ends of primer strands. The product is an RNA.DNA hybrid in which the two polynucleotide components are covalently linked. Free DNA has not been detected among the products formed with the purified enzyme in vitro. The DNA synthesized with avian myeloblastosis virus RNA after alkaline hydrolysis has a sedimentation coefficient of 6 to 7S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号