首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA insertion mutagenesis in a Pseudomonas aeruginosa R plasmid.   总被引:5,自引:0,他引:5  
V Krishnapillai 《Plasmid》1979,2(2):237-246
The transposons Tn501 and Tn7 were used to obtain transfer-deficient (Tra?) and carbenicillin-sensitive (Cbs) mutants of the narrow-host-range R plasmid R91-5 of Pseudomonas aeruginosa. In cells that are harboring R91-5 together with an unrelated transposon-donor plasmid and that have undergone 50–75 cell divisions (established donors), both transposons induced a very high frequency (87–93%) of mutations affecting Tra and Cbr. However, when transconjugants inheriting the transposon are immediately assayed for mutations (recent transposition events) there is a marked difference in the yield of mutants. Although both transposons generated Cbs mutants at the same frequency (0.1%), Tn7 induced Tra? mutants at a frequency of 59% as compared to 0.23% by Tn501. Some Tra? mutants induced by both transposons were leaky but retransfer tests showed that this was not due to reversion. Both transposons showed considerable specificity when mutations affecting transfer-related functions such as sensitivity to donor-specific phage, inhibition of the replication of phage G101, and entry exclusion were compared. Thirty-seven percent of the Tra? mutants induced by Tn501 were also Cbs. These double mutants were leaky with respect to all the properties tested and selection for Cbr revertants restored Tra+ simultaneously. A number of hypotheses were considered as explanations including the possibility that tra (transfer genes) and bla (the β-lactamase gene for carbenicillin resistance) are closely linked in R91-5, that tra formed a number of operons with one of them encompassing bla, and the possible creation of a new promoter in the bla gene which impeded tra expression. Both transposons generated a high frequency (81–86%) of deletions of the bla gene as judged by nonrevertibility.  相似文献   

2.
The resistance system of Mycobacterium bovis (B.C.G.) to aminoglycoside-and peptide-antibiotics has been studied. The phenotype of mutants isolated from the parent B.C.G. strain by a single-step selection with an antibiotic were classified into the following three types: (1) resistant only to a low concentration (200 μg/ml) of kanamycin in Ogawa egg medium (k1R); (2) resistant to a low concentration (200 μg/ml) of viomycin and of capreomycin (2R); and (3) resistant to a high concentration (1,000 μg/ml or more) of kanamycin and low concentrations (100 to 200 μg/ml) of lividomycin and of paromomycin (KR). The mutants showing these phenotypes, k1R, 2R, and KR, were isolated from the parent strain by inoculating the strain into media containing 100 μg/ml of kanamycin, and 100 μ/g/ml of viomycin or capreomycin, and 1,000 μg/ml of kanamycin, respectively, at rates of 10?5-10?6, 10?5-10?6, and 10?6-10?7, respectively, in a total viable population of the parent strain. Unlike in the case of M. tuberculosis, no mutant could be isolated from the parent strain by use of enviomycin, lividomycin, and/or paromomycin. In contrast to the fact that quadruply resistant mutants were isolated directly from the parent H37Rv strain of M. tuberculosis, such mutants could be isolated only by two-step selections. Furthermore, the phenotypes of the quadruply resistant mutants were those showing a higher resistance or a broader spectrum than expected by the addition of phenotypes of individual mutations. In addition, it was shown that, in contrast to the fact that hextuply resistant mutants could be isolated directly from the parent strain of M. tuberculosis, such mutants were not isolated directly from the parent B.C.G. strain, but could be isolated only after pre-incubation of the strain on a medium containing Tween 80.  相似文献   

3.
Three methods have been successful in the isolation of transfer-deficient mutants of the narrow-host-range R plasmid R91-5 of Pseudomonas aeruginosa: (i) selection for donor-specific phage resistance; (ii) direct screening after mutagenic treatment with either ethyl methane sulfonate or N-methyl-N'-nitro-N-nitrosoguanidine; (iii) in vitro mutagenesis of plasmid DNA by hydroxylamine followed by transformation and direct screening. The majority of transfer-deficient mutants were donor-specific phage resistant, supporting the view that sex pili and other surface components are essential for conjugal transfer (since the phages PRD1 and PR4 adsorb to these sites). Some of the transfer-deficient mutants were also unable to inhibit the replication of phage G101 or lost entry exclusion or both phenotypes. The ability to revert these pleiotropic mutants to wild type implicates the latter two functions in R91-5 transfer. Suppressor mutations in P. aeruginosa enabled the detection of suppressor-sensitive, transfer-deficient mutants. Such mutants should prove useful in conjugational complementation tests for the identification of the transfer cistrons of R91-5.  相似文献   

4.
A method of transductional complementation was developed in Pseudomonas aeruginosa to identify the cistrons involved in the conjugal transfer of the wide host range R plasmid R18. This used the P. aeruginosa bacteriophage E79tv-2 and has led to the identification of eight tra cistrons encoded by this plasmid. Plasmids mutant in six cistrons, traA, traB, traC, traD, traE, and traG were resistant to donor-specific phage (Dps?) while traF and traH mutant plasmids retained phage sensitivity. Some traB mutants were unable to inhibit the replication of phage G101 (Phi(G101)?) while some were also deficient in entry exclusion (Eex?). Two traB mutants which were also Eex? were suppressible by an amber suppressor. Three tra mutants selected directly as being Phi(G101)? were found to be also Dps?Eex? and mutant in traB. These data suggest a relationship between traB, Eex, and Phi(G101). In order to facilitate future genetic comparison of the tra genes of R18 and other wide host range plasmids and the role of the host in conjugation, R18 DNA was compared with that of RP4, by restriction enzyme fragment patterns and found to be identical.  相似文献   

5.
Summary The transposition of Tn10 from the E. coli chromosome to pDU202 (a TcS deletion mutant of R100-1) was selected by a mating technique: it took place at a frequency of 10-7 in both rec + and recA hosts. Seventeen transfer deficient mutants of pDU202 caused by the insertion of Tn10 into the R factor's transfer genes were analysed. Insertion of Tn10 occurred at at least eight sites, with some apparent clustering in the second part of the transfer operon, and with equal numbers in each orientation. Both strongly and weakly polar insertions were observed, and the strength of the polarity was correlated with the Tn10 orientation. The map order of the second part of the transfer operon was confirmed as traC traF traH traG traS traD, analogous to that of F. The strongly polar insertion mutants still expressed traI at wild-type levels, providing further evidence that this gene does not belong to the transfer operon of R100.  相似文献   

6.
Conjugal transfer and autonomous replication of some episomes occurred normally in a recombination-deficient (Rec) mutant of Escherichia coli K-12. Transduction with phage Plbt of an R factor also occurred normally in this Rec mutant, but complete or abortive transduction with Plbt of chromosomal genes did not occur. In contrast, transduction of galactose genes by phage λdg occurred in the Rec bacteria as frequently as in the Rec+ strain. It was shown that phage Plbt does not grow at all on the Rec–bacteria. Recombination between two different R factors, two mutants of phage λ and two mutants of phage T4 occurred normally in the Rec bacteria, but did not give a Rec+ phenotype to the host bacteria. Colicinogenic factor I made the Rec host bacteria more resistant to ultraviolet light but the colicinogenic strain was still infertile in the crosses with the Hfr srains of E. coli K-12.  相似文献   

7.
A phage-insensitive strain of Streptococcus lactis, designated ME2, was used as a prototype strain for the study of mechanisms and genetics of phage resistance in the lactic streptococci. Mutants sensitive to a Streptococcus cremoris phage, ϕ18, were isolated at a level of 17% from cultures of ME2 after sequential transfer at 30°C. Phage-sensitive mutants of ME2 were not fully permissive to ϕ18. The efficiency of plating of ϕ18 on the mutants was 5 × 10−7 as compared with <10−9 for ϕ18 on ME2. Further characterization of the mutants showed that they efficiently adsorbed ϕ18 at levels of >99.8%, whereas ME2 adsorbed only 20 to 40% of ϕ18. These results suggest that increased phage susceptibility of the mutants may result from the loss of a mechanism that inhibits phage adsorption. Moreover, the high frequency of spontaneous mutation in ME2 indicates the involvement of an unstable genetic determinant in this phage defense mechanism. ME2 was shown to possess 13 plasmids ranging in size from 1.6 to 34 megadaltons. Of 40 mutants examined that had increased efficiencies of plating, all were missing a 30-megadalton plasmid, pME0030. These data suggest that pME0030 codes for a function that prevents phage adsorption. Further phenotypic characterization of the phage-sensitive mutants showed that some mutants were deficient in the ability to ferment lactose (Lac) and hydrolyze milk proteins (Prt). However, the Lac+ and Prt+ phenotype segregated independently of the phage-sensitivity phenotype. One phage-sensitive adsorption mutant, designated N1, was tested for susceptibility to 14 different phages. N1 showed increased capacity to adsorb 4 and to replicate 2 of these 14 phages, thereby indicating a phage resistance mechanism in ME2 that generalizes to phage interactions other than the specific ϕ18-ME2 phage-host interaction. These data provide evidence for a unique plasmid-linked phage defense mechanism in phage-insensitive strains of lactic streptococci.  相似文献   

8.
Summary A large number of Caulobacter mutants resistant to DNA or RNA phages were isolated. These phage-resistant mutants exhibited phenotypic variations with respect to cell motility and sensitivity to other phages.The majority of the mutants was resistant to both DNA and RNA phages tested. In addition, these mutants were either motile or non-motile. The analysis of spontaneous revertants from these mutants indicated that a single mutation is involved in these phenotypic variations. Other mutants were resistant to RNA phages and only to a certain DNA phage tested, and were also motile or non-motile.Several temperature-sensitive phage-resistant mutants were also isolated. One of them, CB13 ple-801, exhibited the wild type phenotype when grown at 25°C. However, at a higher temperature (35°C), the mutant cells became non-motile and resistant to both DNA and RNA phages. These phenotypes seem to be attributed to the concommitant loss of flagella, pili and phage receptors. In other respects (cell growth and morphology, and asymmetric stalk formation), CB13 ple-801 was normal at 35°C. The spontaneous revertants from CB13 ple-801 simultaneously regained the wild type phenotypes in all respects.It is suggested that a single mutation pleiotropically affects the formation of flagella, pili and phage receptors.  相似文献   

9.
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.  相似文献   

10.
Eighty-four transfer-deficient mutants of Flac have been isolated; 27 of these bear amber mutations and 1 mutant is temperature-sensitive. All the mutants transfer between 10(-2) and <10(-5)% as well as wild-type Flac, all are curable by acridine orange treatment, and all are resistant to the female-specific phage phi(II). Some of the mutants are partially sensitive to female-specific phage tau. Sixty-three of the mutants are resistant to the male-specific phages f1, f2, and Qbeta; 15 are resistant only to f2; and 6 are sensitive to all three male-specific phages. Most of the mutants are still poor recipients in conjugation, but four of the mutants resistant to f1, f2, and Qbeta have become good recipients. Those mutants resistant to all three male-specific phages do not seem to make F-pili.  相似文献   

11.
We have constructed phage cloning vectors from an actinophage, R4. A deletion derivative (R4 Δ22B) which had a BamHI linker inserted at the unique PvuII site was used to clone the thiostreptone resistant (tsr) gene derived from plasmid vector pIJ365. The tsr derivative obtained, R4Δ22B-tsr1, was shown to have the same level of thiostreptone resistance in lysogenized cells as that of pIJ365-carrying cells. Under the optimal conditions, R4Δ22B-tsr1 phage was lysogenized at a frequency of 5x10-2 per infected phage. The usefulness of R4 phage derivatives for gene cloning is discussed.  相似文献   

12.
Transduction of antibiotic resistance determinants of the plasmid pBR322 with pseudoT-even bacteriophages RB42, RB43, and RB49 was studied. It is established that antibiotic resistance determinants of plasmid pBR322 fromEscherichia coli recA + and recA donor strains do not differ significantly in respect to the efficiency of transduction. Amber mutants RB43-21, RB43-33, and a double amber mutant RB43am21am33 were obtained. These mutants facilitated transduction experiments in some cases. Transduction of antibiotic resistance markers of the vector plasmid pBR325 and recombinant plasmid pVT123, containing a DNA fragment with hoc–segEuvsW genes of phage T4, was studied. The frequency of appearance of transductants resistant to pseudoT-even bacteriophages used in transduction was determined, and the sensitivity of resistant transductants to 32 RB bacteriophages and also to phages , T2, T4, T5, T6, T7, and BF23 was estimated. The efficiency of plating pseudoT-even bacteriophages RB42 and RB43 on strain E. coli 802 himA hip carrying mutations in genes that encode subunits of the Integration Host Factor (IHF) was shown to be higher than on isogenic strain E. coli 802. The growth of pseudoT-even bacteriophages limitedin vivo by modification–restriction systems of chromosomal (EcoKI, EcoBI), phage (EcoP1I), and plasmid (EcoRI, EcoR124I, and EcoR124II) localization was analyzed. It was shown that these phages were only slightly restricted by the type I modification–restriction systemsEcoBI, EcoR124I, and EcoR124II. Phage RB42 was restricted by systems EcoKI, EcoP1I, and EcoRI; phage RB43, by systems EcoKI and EcoRI; and phage RB49, by the EcoRI modification–restriction system.  相似文献   

13.
The development of a transductional method for complementation tests between transfer-deficient mutants of the narrow-host-range R plasmic R91-5 of Pseudomonas aeruginosa has allowed the indentification of cistrons involved in the conjugal transfer of this plasmid. Complementation tests performed between transfer-deficient mutants characterized phenotypically with respect to sensitivity to donor-specific phage, ability to inhibit the replication of phage G101, and expression of entry-exclusion has identified a minimum of 10 transfer cistrons. Although most mutagen-induced mutants were relatively heterogeneous and appeared to be affected in a single cistron only, a high proportion of mutants isolated after selection for donor-specific phage resistance had deletions but always included tra Y. Mutants selected directly on the basis of transfer deficiency which also became donor-specific phage resistant fell into all 10 cistrons, suggesting that many R91-5 transfer cistrons are concerned with the synthesis of sex pili and other surface structures necessary for conjugal transfer. Conversely, most retaining donor-specific phage sensitivity belonged to one cistron, whereas transfer-deficient mutants which had also lost the ability to inhibit the replication of phage G101 comprised four cistrons.  相似文献   

14.
IncHI plasmids are naturally repressed for conjugative transfer and do not allow efficient propagation of the IncH pilus-specific phage Hgal. Transposons Tn7, Tn5, and TnlacZ were inserted into IncHI plasmids R478, R477-1, and R27, respectively, leading to the isolation of several plasmid mutants which exhibited increased levels of transfer and also permitted good lysis with phage Hgal. A 4.3-kb HindIII fragment from R478 reversed both phenotypic effects of derepression for the R477-1::Tn5 and the R478::Tn7 derivatives, pKFW99 and pKFW100, respectively. Exonuclease III deletions of this fragment and nucleotide sequence analysis indicated that the gene responsible for transfer repression, named here htdA, encoded a polypeptide of 150 amino acids. Cloning and sequence analysis of pDT2454 (R27::TnlacZ) revealed that the transposon had inserted into an open reading frame (ORF) which had an 83% amino acid identity with the R478 htdA gene. Maxicell analysis showed both the R27 and R478 HtdA products had molecular masses of 19.9 kDa. Conjugation experiments showed that the cloned htdA determinants caused a significant reduction of the transfer frequencies of wild-type R478 and R27 plasmids. Examination of both R478 derepressed mutants, pKFW100 and pKFW101, indicated that both transposon insertions occurred upstream of the htdA ORF. The results suggest that HtdA is a regulatory component of IncH plasmid transfer and also show that the region upstream of the htdA ORF is involved in transfer repression. The locations of the htdA determinants were identified on the plasmid maps of R27 and R478.  相似文献   

15.
Summary Strains carrying an I-like R factor, R64, or its derepressed derivative, R64-11, together with an Flac episome mutant in one of ten cistrons determining transfer-proficiency, transferred the Flac mutant at a frequency equivalent to about 1% of the level of R factor transfer. Similarly, R64, R64-11 and transfer-deficient mutants of R64-11, were transferred at increased frequencies in the presence of wild-type Flac. Experiments using RecA strains showed that mobilisation by recA +-promoted recombination was not involved, and others using strains carrying transfer-deficient mutants of both R64-11 and Flac suggested that even inefficient complementation between R64-11 and Flac transfer mutants did not occur. The transfer systems of the two plasmids seemed, therefore, to be unrelated, and plasmid-specific, although at a low frequency the entire transfer system of one, not just the pilus, could transfer a transfer-deficient mutant of the other.  相似文献   

16.
Escherichia coli O157:H7 is an endemic pathogen causing a variety of human diseases including mild diarrhea, hemorrhagic colitis, hemolytic-uremic syndrome, and thrombotic thrombocytopenic purpura. This study concerns the exploitation of bacteriophages as biocontrol agents to eliminate the pathogen E. coli O157:H7. Two distinct lytic phages (e11/2 and e4/1c) isolated against a human strain of E. coli O157:H7, a previously isolated lytic phage (pp01), and a cocktail of all three phages were evaluated for their ability to lyse the bacterium in vivo and in vitro. Phage e11/2, pp01, and the cocktail of all three virulent phages resulted in a 5-log-unit reduction of pathogen numbers in 1 h at 37°C. However, bacteriophage-insensitive mutants (BIMs) emerged following the challenge. All tested BIMs had a growth rate which approximated that of the parental O157 strain, although many of these BIMs had a smaller, more coccoid cellular morphology. The frequency of BIM formation (10−6 CFU) was similar for e11/2, pp01, and the phage cocktail, while BIMs insensitive to e4/1c occurred at the higher frequency (10−4 CFU). In addition, BIMs commonly reverted to phage sensitivity within 50 generations. In an initial meat trial experiment, the phage cocktail completely eliminated E. coli O157:H7 from the beef meat surface in seven of nine cases. Given that the frequency of BIM formation is low (10−6 CFU) for two of the phages, allied to the propensity of these mutants to revert to phage sensitivity, we expect that BIM formation should not hinder the use of these phages as biocontrol agents, particularly since low levels of the pathogen are typically encountered in the environment.  相似文献   

17.
Summary A cytosine-substitution type mutant of bacteriophage T4 (T4dC phage) has been shown to mediate the transfer of plasmid pBR322. The transduction frequency was around 10-2 per singly infected cell at low multiplicity of infection. The transductants contained either a monomer or multimers of pBR322. The transducing capacity of T4dC phage was resistant to methylmethanesulfonate treatment. The results of Southern blotting experiments have indicated that the pBR322 DNA exists as head-to-tail concatemers in the transducing particles. The mechanism of transfer of pBR322 mediated by T4dC phages is discussed  相似文献   

18.
The hydrocarbon-degrading strain Acinetobacter calcoaceticus RAG-1 produces an extracellular emulsifying agent capable of forming stable oil-in-water emulsions. The bioemulsifier, termed emulsan, is a polyanionic heteropolysaccharide (M.W. 106) composed mainly of N-acyl D-galactosamine and an N-acyl hexosamine uronic acid. In order to probe the interaction of emulsan with the cell surface prior to its release into the growth medium, two new virulent bacteriophages for A. calcoaceticus RAG-1 were isolated from sewage and the properties of phage resistant mutants were studied. The two phages, ap-2 and ap-3, were differentiated on the basis of plaque morphology, electron microscopy and buoyant density. Isolated mutants of A. calcoaceticus RAG-1 which were resistant to one of the two phages retained sensitivity to the other phage. Resistance to phage ap-3 was accompanied by a severe drop in emulsan production. Independently isolated derivatives of A. calcoaceticus RAG-1 with a defect in emulsan production also turned out to be resistant towards phage ap-3. Antibodies prepared against purified emulsan specifically inhibited phage ap-3 adsorption to the cell surface of the parental strain.  相似文献   

19.
Summary Tra +and tra derivatives of drug resistance plasmid, R100-1, were isolated by phage P1 from an Hfr donor with integrated R100-1 and then analyzed by complementation tests with tra point mutants of Flac. Tra +derivatives of R100-1 carrying tetracycline resistance alone and those carrying all six drug-resistance genes could support transfer of tra point mutants of Flac except Flac traJ, whereas all of tra derivatives of R100-1 failed to complement any one of tra point mutants of Flac. This suggests that these tra derivatives of R100-1 carrying tetracycline resistance gene are deleted for all the transfer genes impaired in the Flac point mutants tested. We assume a hot point, probably a specific base sequence similar to an IS element, at the left of the tetracycline gene (Fig. 1) becomes a transduction terminus in transduction of the integrated R100-1 by phage P1. Complementation analysis of tra derivatives carrying five resistance genes except the tetracycline gene led us to a supposition that a gene(s), probably analogous to traJ of the F plasmid, is located on R100-1 near the tetracycline gene which plays an important regulatory role for self-transfer as well as for the complementation of tra Flac mutants.  相似文献   

20.
After the transfer of prototype plasmids R6K (IncX), R387 (IncK), R27 (IncH1) and T (IncN) to E. coli M nalr the appearance of histidine-dependent mutants (R27, T), histidine-leucine-dependent mutants (R6K), methionine-proline-dependent mutants (R387) was observed among the resulting transconjugates. The mutations of E. coli M nalr R+ cells induced by the introduction of the plasmids were accompanied by the transformation of the cells from the S-form into the R-form. In contrast to the prototrophs E. coli M nalr, the auxotrophs carrying plasmids R6K, R27, T acquired sensitivity to phage T7, and the methionine-proline-dependent mutant became sensitive to phages T and T7. The above-mentioned plasmids rendered E. coli M cells capable of synthetizing the donor pili. But the adsorption of phages T3 and T7 on the auxotrophic cells, both with and without plasmids, occurred due to their interaction with the cell-wall receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号