首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Type IV pili (T4P) are long, thin, flexible filaments on bacteria that undergo assembly-disassembly from inner membrane pilin subunits and exhibit astonishing multifunctionality. Neisseria gonorrhoeae (gonococcal or GC) T4P are prototypic virulence factors and immune targets for increasingly antibiotic-resistant human pathogens, yet detailed structures are unavailable for any T4P. Here, we determined a detailed experimental GC-T4P structure by quantitative fitting of a 2.3 A full-length pilin crystal structure into a 12.5 A resolution native GC-T4P reconstruction solved by cryo-electron microscopy (cryo-EM) and iterative helical real space reconstruction. Spiraling three-helix bundles form the filament core, anchor the globular heads, and provide strength and flexibility. Protruding hypervariable loops and posttranslational modifications in the globular head shield conserved functional residues in pronounced grooves, creating a surprisingly corrugated pilus surface. These results clarify T4P multifunctionality and assembly-disassembly while suggesting unified assembly mechanisms for T4P, archaeal flagella, and type II secretion system filaments.  相似文献   

2.
PCNA (proliferating-cell nuclear antigen) is a ring-shaped protein that encircles duplex DNA and plays an essential role in many DNA metabolic processes. The PCNA protein interacts with a large number of cellular factors and modulates their enzymatic activities. In the present paper, we summarize the structures, functions and interactions of the archaeal PCNA proteins.  相似文献   

3.
4.
A great number of novel and unique chemical structures of archaeal polar lipids have been reported. Since 1993, when those lipids were reviewed in several review articles, a variety of core lipids and lipids with unique polar groups have been reported successively. We summarize new lipid structures from archaea elucidated after 1993. In addition to lipids from intact archaeal cells, more diverse structures of archaea-related lipids found in environmental samples are also reviewed. These lipids are assumed to be lipids from unidentified or ancient archaea or related organisms. In the second part of this paper, taxonomic and ecological aspects are discussed. Another aspect of archaeal lipid study has to do with its physiological significance, particularly the phase behavior and permeability of archaeal lipid membranes in relation to the thermophily of many archaea. In the last part of this review we discuss this problem.  相似文献   

5.
In both bacteria and Archaea, the biosynthesis of type IV pilus-related structures involves a set of core components, including a prepilin peptidase that specifically processes precursors of pilin-like proteins. Although in silico analyses showed that most sequenced archaeal genomes encode predicted pilins and conserved pilus biosynthesis components, recent in vivo analyses of archaeal pili in genetically tractable crenarchaea and euryarchaea revealed Archaea-specific type IV pilus functions and biosynthesis components. Studies in a variety of archaeal species will reveal which type IV pilus-like structures are common in Archaea and which are limited to certain species within this domain. The insights gleaned from these studies may also elucidate the roles played by these types of structures in adapting to specific environments.  相似文献   

6.
A great number of novel and unique chemical structures of archaeal polar lipids have been reported. Since 1993, when those lipids were reviewed in several review articles, a variety of core lipids and lipids with unique polar groups have been reported successively. We summarize new lipid structures from archaea elucidated after 1993. In addition to lipids from intact archaeal cells, more diverse structures of archaea-related lipids found in environmental samples are also reviewed. These lipids are assumed to be lipids from unidentified or ancient archaea or related organisms. In the second part of this paper, taxonomic and ecological aspects are discussed. Another aspect of archaeal lipid study has to do with its physiological significance, particularly the phase behavior and permeability of archaeal lipid membranes in relation to the thermophily of many archaea. In the last part of this review we discuss this problem.  相似文献   

7.
Diversity of archaeal type IV pilin-like structures   总被引:2,自引:0,他引:2  
Bacterial type IV pili perform important functions in such disparate biological processes as surface adhesion, cell–cell interactions, autoaggregation, conjugation, and twitching motility. Unlike bacteria, archaea use a type IV pilus related structure to drive swimming motility. While this unique flagellum is the best-studied example of an archaeal IV pilus-like structure, recent in silico, in vivo and structural analyses have revealed a highly diverse set of archaeal non-flagellar type IV pilus-like structures. Accumulating evidence suggests that these structures play important diverse roles in archaea.  相似文献   

8.
Archaeal flagella are unique structures that share functional similarity with bacterial flagella, but are structurally related to bacterial type IV pili. The flagellar accessory protein FlaH is one of the conserved components of the archaeal motility system. However, its function is not clearly understood. Here, we present the 2.2 Å resolution crystal structure of FlaH from the hyperthermophilic archaeon, Methanocaldococcus jannaschii. The protein has a characteristic RecA‐like fold, which has been found previously both in archaea and bacteria. We show that FlaH binds to immobilized ATP—however, it lacks ATPase activity. Surface plasmon resonance analysis demonstrates that ATP affects the interaction between FlaH and the archaeal motor protein FlaI. In the presence of ATP, the FlaH‐FlaI interaction becomes significantly weaker. A database search revealed similarity between FlaH and several DNA‐binding proteins of the RecA superfamily. The closest structural homologs of FlaH are KaiC‐like proteins, which are archaeal homologs of the circadian clock protein KaiC from cyanobacteria. We propose that one of the functions of FlaH may be the regulation of archaeal motor complex assembly.  相似文献   

9.
Extremophilic archaea, both hyperthermophiles and halophiles, dominate in habitats where rather harsh conditions are encountered. Like all other organisms, archaeal cells are susceptible to viral infections, and to date, about 100 archaeal viruses have been described. Among them, there are extraordinary virion morphologies as well as the common head-tailed viruses. Although approximately half of the isolated archaeal viruses belong to the latter group, no three-dimensional virion structures of these head-tailed viruses are available. Thus, rigorous comparisons with bacteriophages are not yet warranted. In the present study, we determined the genome sequences of two of such viruses of halophiles and solved their capsid structures by cryo-electron microscopy and three-dimensional image reconstruction. We show that these viruses are inactivated, yet remain intact, at low salinity and that their infectivity is regained when high salinity is restored. This enabled us to determine their three-dimensional capsid structures at low salinity to a ∼10-Å resolution. The genetic and structural data showed that both viruses belong to the same T-number class, but one of them has enlarged its capsid to accommodate a larger genome than typically associated with a T=7 capsid by inserting an additional protein into the capsid lattice.  相似文献   

10.
The single-domain coenzyme A (CoA)-binding protein is conserved in bacteria, archaea, and a few eukaryal taxa. It consists of a Rossmann-fold domain, belonging to the FAD/NAD(P)-binding ;superfamily. The crystal structure of the Thermus thermophilus single-domain CoA-binding protein, TTHA1899, has been determined and it has been demonstrated, by isothermal titration calorimetry, that the protein interacts with CoA [Wada T. et al. Acta Crystallogr D Biol Crystallogr 59 (2003) 1213]. In the present study, we determined the crystal structures of an orthologous protein from the archaeon Pyrococcus horikoshii (PH1109), alone and complexed with CoA, at 1.65 A and 1.70 A resolutions, respectively, and that of P. furiosus protein (PF0725) in the CoA-bound form at 1.70 A. The CoA-bound structures are very similar to each other, revealing that the Pyrococcus proteins bind CoA in a 1:1 stoichiometry. Five loop-containing regions form the CoA-binding groove, to which the CoA molecule is docked. A comparison of the structures and the sequences of the Pyrococcus proteins with those of the T. theromphilus orthologue TTHA1899 indicated that archaeal and bacterial single-domain CoA-binding proteins share the same CoA-binding mode. Nevertheless, many of the peripheral residues involved in the hydrogen-bonding/electrostatic interactions with CoA are not strictly conserved in the family. The CoA interaction of the single-domain CoA-binding proteins is significantly different and much more extensive than that of the multi-subunit/multi-domain CoA-binding protein succinyl-CoA synthetase.  相似文献   

11.
12.
Protein translocation across the prokaryotic plasma membrane occurs at the translocon, an evolutionarily conserved membrane-embedded proteinaceous complex. Together with the core components SecYE, prokaryotic translocons also contain auxilliary proteins, such as SecDF. Alignment of bacterial and archaeal SecDF protein sequences reveals the presence of a similar number of homologous regions within each protein. Moreover, the conserved sequence domains in the archaeal proteins are located in similar positions as their bacterial counterparts. When these domains are, however, compared along Bacteria-Archaea lines, a much lower degree of similarity is detected. In Bacteria, SecDF are thought to modulate the membrane association of SecA, the ATPase that provides the driving force for bacterial protein secretion. As no archaeal version of SecA has been detected, the sequence differences reported here may reflect functional differences between bacterial and archaeal SecDF proteins, and by extension, between the bacterial and archaeal protein translocation processes. Moreover, the apparent absence of SecDF in several completed archaeal genomes suggests that differences may exist in the process of protein translocation within the archaeal domain itself.  相似文献   

13.
Dynamics of phosphatidylinositol 4,5-bisphosphate in actin-rich structures   总被引:5,自引:0,他引:5  
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is known to regulate a wide range of molecular targets and cellular processes, from ion channels to actin polymerization [1] [2] [3] [4] [5] [6]. Recent studies have used the phospholipase C-delta1 (PLC-delta1) pleckstrin-homology (PH) domain fused to green fluorescent protein (GFP) as a detector for PI(4,5)P(2) in vivo [7] [8] [9] [10]. Although these studies demonstrated that PI(4,5)P(2) is concentrated in the plasma membrane, its association with actin-containing structures was not reported. In the present study, fluorescence imaging of living NIH-3T3 fibroblasts expressing the PLC-delta1 PH domain linked to enhanced green fluorescent protein (PH-EGFP) reveals intense, non-uniform fluorescence in distinct structures at the cell periphery. Corresponding fluorescence and phase-contrast imaging over time shows that these fluorescent structures correlate with dynamic, phase-dense features identified as ruffles and with microvillus-like protrusions from the cell's dorsal surface. Imaging of fixed and permeabilized cells shows co-localization of PH-EGFP with F-actin in ruffles, but not with vinculin in focal adhesions. The selective concentration of the PH-EGFP fusion protein in highly dynamic regions of the plasma membrane that are rich in F-actin supports the hypothesis that localized synthesis and lateral segregation of PI(4,5)P(2) spatially restricts actin polymerization and thereby affects cell spreading and retraction.  相似文献   

14.
We examined the molecular basis of ddNTP selectivity in archaeal family B DNA polymerases by randomly mutagenizing the gene encoding Thermococcus sp. JDF-3 DNA polymerase and screening mutant libraries for improved ddNTP incorporation. We identified two mutations, P410L and A485T, that improved ddNTP uptake, suggesting the contribution of P410 and A485 to ddNTP/dNTP selectivity in archaeal DNA polymerases. The importance of A485 was identified previously in mutagenesis studies employing Pfu (A486) and Vent (A488) DNA polymerases, while the contribution of P410 to ddNTP/dNTP selectivity has not been reported. We demonstrate that a combination of mutations (P410L/A485T) has an additive effect in improving ddNTP incorporation by a total of 250-fold. To assess the usefulness of the JDF-3 P410L/A485T in fluorescent-sequencing applications, we compared the archaeal mutant to Taq F667Y with respect to fidelity and kinetic parameters for DNA and dye-ddNTPs. Although the Taq F667Y and JDF-3 P410L/A485T mutants exhibit similar K(m) and V(max) values for dye-ddNTPs in single-base extension assays, the archaeal mutant exhibits higher fidelity due to a reduced tendency to form certain (ddG:dT, ddT:dC) mispairs. DNA polymerases exhibiting higher insertion fidelity are expected to provide greater accuracy in SNP frequency determinations by single-base extension and in multiplex minisequencing assays.  相似文献   

15.
Lipidic cubic phase-grown crystals yielded high resolution structures of a number of archaeal retinal proteins, the molecular mechanisms of which are being revealed as structures of photocycle intermediates become available. The structural basis for bacteriorhodopsin's mechanism of proton pumping is discussed, revealing a well-synchronized sequence of molecular events. Comparison with the high resolution structures of the halide pump halorhodopsin, as well as with the receptor sensory rhodopsin II, illustrates how small and localized structural changes result in functional divergence. Fundamental principles of energy transduction and sensory reception in the archaeal rhodopsins, which may have relevance to other systems, are discussed.  相似文献   

16.
17.
DNA replication in the archaea.   总被引:1,自引:0,他引:1  
The archaeal DNA replication machinery bears striking similarity to that of eukaryotes and is clearly distinct from the bacterial apparatus. In recent years, considerable advances have been made in understanding the biochemistry of the archaeal replication proteins. Furthermore, a number of structures have now been obtained for individual components and higher-order assemblies of archaeal replication factors, yielding important insights into the mechanisms of DNA replication in both archaea and eukaryotes.  相似文献   

18.
Northern peatlands play a major role in the global carbon cycle as sinks for CO2 and as sources of CH4. These diverse ecosystems develop through accumulation of partially decomposed plant material as peat. With increasing depth, peat becomes more and more recalcitrant due to its longer exposure to decomposing processes. Compared with surface peat, deeper peat sediments remain microbiologically poorly described. We detected active archaeal communities even in the deep bottom layers (−220/−280 cm) of two Finnish fen-type peatlands by 16S rRNA-based terminal restriction fragment length polymorphism analysis. In the sediments of the northern study site, all detected archaea were methanogens with Rice Cluster II (RC-II) and Methanosaetaceae as major groups. In southern peatland, Crenarchaeota of a rare unidentified cluster were present together with mainly RC-II methanogens. RNA profiles showed a larger archaeal diversity than DNA-based community profiles, suggesting that small but active populations were better visualized with rRNA. In addition, potential methane production measurements indicated methanogenic activity throughout the vertical peat profiles.  相似文献   

19.
RNase P, which catalyzes tRNA 5′-maturation, typically comprises a catalytic RNase P RNA (RPR) and a varying number of RNase P proteins (RPPs): 1 in bacteria, at least 4 in archaea and 9 in eukarya. The four archaeal RPPs have eukaryotic homologs and function as heterodimers (POP5•RPP30 and RPP21•RPP29). By studying the archaeal Methanocaldococcus jannaschii RPR''s cis cleavage of precursor tRNAGln (pre-tRNAGln), which lacks certain consensus structures/sequences needed for substrate recognition, we demonstrate that RPP21•RPP29 and POP5•RPP30 can rescue the RPR''s mis-cleavage tendency independently by 4-fold and together by 25-fold, suggesting that they operate by distinct mechanisms. This synergistic and preferential shift toward correct cleavage results from the ability of archaeal RPPs to selectively increase the RPR''s apparent rate of correct cleavage by 11 140-fold, compared to only 480-fold for mis-cleavage. Moreover, POP5•RPP30, like the bacterial RPP, helps normalize the RPR''s rates of cleavage of non-consensus and consensus pre-tRNAs. We also show that archaeal and eukaryal RNase P, compared to their bacterial relatives, exhibit higher fidelity of 5′-maturation of pre-tRNAGln and some of its mutant derivatives. Our results suggest that protein-rich RNase P variants might have evolved to support flexibility in substrate recognition while catalyzing efficient, high-fidelity 5′-processing.  相似文献   

20.
DNA Replication in the Archaea   总被引:11,自引:0,他引:11       下载免费PDF全文
The archaeal DNA replication machinery bears striking similarity to that of eukaryotes and is clearly distinct from the bacterial apparatus. In recent years, considerable advances have been made in understanding the biochemistry of the archaeal replication proteins. Furthermore, a number of structures have now been obtained for individual components and higher-order assemblies of archaeal replication factors, yielding important insights into the mechanisms of DNA replication in both archaea and eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号