首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetotactic bacteria form chains of intracellular membrane-enclosed, nanometre-sized magnetite crystals for navigation along the earth's magnetic field. The assembly of these prokaryotic organelles requires several specific polypeptides. Among the most abundant proteins associated with the magnetosome membrane of Magnetospirillum gryphiswaldense are MamB and MamM, which were implicated in magnetosomal iron transport because of their similarity to the cation diffusion facilitator family. Here we demonstrate that MamB and MamM are multifunctional proteins involved in several steps of magnetosome formation. Whereas both proteins were essential for magnetite biomineralization, only deletion of mamB resulted in loss of magnetosome membrane vesicles. MamB stability depended on the presence of MamM by formation of a heterodimer complex. In addition, MamB was found to interact with several other proteins including the PDZ1 domain of MamE. Whereas any genetic modification of MamB resulted in loss of function, site-specific mutagenesis within MamM lead to increased formation of polycrystalline magnetite particles. A single amino acid substitution within MamM resulted in crystals consisting of haematite, which coexisted with magnetite crystals. Together our data indicate that MamM and MamB have complex functions, and are involved in the control of different key steps of magnetosome formation, which are linked by their direct interaction.  相似文献   

2.
Magnetotactic bacteria synthesize intracellular magnetosomes that are comprised of membrane‐enveloped magnetic crystals. In this study, to identify the early stages of magnetosome formation, we isolated magnetosomes containing small magnetite crystals and those containing regular‐sized magnetite crystals from Magnetospirillum magneticum AMB‐1. This was achieved by using a novel size fractionation technique, resulting in the identification of a characteristic protein (Amb1018/MamY) from the small magnetite crystal fraction. The gene encoding MamY was located in the magnetosome island. Like the previously reported membrane deformation proteins, such as bin/amphiphysin/Rvs (BAR) and the dynamin family proteins, recombinant MamY protein bound directly to the liposomes, causing them to form long tubules. We established a mamY gene deletion mutant (ΔmamY) and analysed MamY protein localization in it for functional characterization of the protein in vivo. The ΔmamY mutant was found to have expanded magnetosome vesicles and a greater number of small magnetite crystals relative to the wild‐type strain, suggesting that the function of the MamY protein is to constrict the magnetosome membrane during magnetosome vesicle formation, following which, the magnetite crystals grow to maturity within them.  相似文献   

3.
Magnetotactic bacteria (MTB) are a group of Gram‐negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome‐chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome‐associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.  相似文献   

4.
In magnetotactic bacteria, a number of specific proteins are associated with the magnetosome membrane (MM) and may have a crucial role in magnetite biomineralization. We have cloned and sequenced the genes of several of these polypeptides in the magnetotactic bacterium Magnetospirillum gryphiswaldense that could be assigned to two different genomic regions. Except for mamA, none of these genes have been previously reported to be related to magnetosome formation. Homologous genes were found in the genome sequences of M. magnetotacticum and magnetic coccus strain MC-1. The MM proteins identified display homology to tetratricopeptide repeat proteins (MamA), cation diffusion facilitators (MamB), and HtrA-like serine proteases (MamE) or bear no similarity to known proteins (MamC and MamD). A major gene cluster containing several magnetosome genes (including mamA and mamB) was found to be conserved in all three of the strains investigated. The mamAB cluster also contains additional genes that have no known homologs in any nonmagnetic organism, suggesting a specific role in magnetosome formation.  相似文献   

5.
Magnetotactic bacteria have the ability to orient along geomagnetic field lines based on the formation of magnetosomes, which are intracellular nanometer-sized, membrane-enclosed magnetic iron minerals. The formation of these unique bacterial organelles involves several processes, such as cytoplasmic membrane invagination and magnetosome vesicle formation, the accumulation of iron in the vesicles, and the crystallization of magnetite. Previous studies suggested that the magA gene encodes a magnetosome-directed ferrous iron transporter with a supposedly essential function for magnetosome formation in Magnetospirillum magneticum AMB-1 that may cause magnetite biomineralization if expressed in mammalian cells. However, more recent studies failed to detect the MagA protein among polypeptides associated with the magnetosome membrane and did not identify magA within the magnetosome island, a conserved genomic region that is essential for magnetosome formation in magnetotactic bacteria. This raised increasing doubts about the presumptive role of magA in bacterial magnetosome formation, which prompted us to reassess MagA function by targeted deletion in Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. Contrary to previous reports, magA mutants of both strains still were able to form wild-type-like magnetosomes and had no obvious growth defects. This unambiguously shows that magA is not involved in magnetosome formation in magnetotactic bacteria.  相似文献   

6.
In magnetotactic bacteria, a number of specific proteins are associated with the magnetosome membrane (MM) and may have a crucial role in magnetite biomineralization. We have cloned and sequenced the genes of several of these polypeptides in the magnetotactic bacterium Magnetospirillum gryphiswaldense that could be assigned to two different genomic regions. Except for mamA, none of these genes have been previously reported to be related to magnetosome formation. Homologous genes were found in the genome sequences of M. magnetotacticum and magnetic coccus strain MC-1. The MM proteins identified display homology to tetratricopeptide repeat proteins (MamA), cation diffusion facilitators (MamB), and HtrA-like serine proteases (MamE) or bear no similarity to known proteins (MamC and MamD). A major gene cluster containing several magnetosome genes (including mamA and mamB) was found to be conserved in all three of the strains investigated. The mamAB cluster also contains additional genes that have no known homologs in any nonmagnetic organism, suggesting a specific role in magnetosome formation.  相似文献   

7.
Recent molecular studies on magnetotactic bacteria have identified a number of proteins associated with bacterial magnetites (magnetosomes) and elucidated their importance in magnetite biomineralisation. However, these analyses were limited to magnetotactic bacterial strains belonging to the α‐subclass of Proteobacteria. We performed a proteomic analysis of magnetosome membrane proteins in Desulfovibrio magneticus strain RS‐1, which is phylogenetically classified as a member of the δ‐Proteobacteria. In the analysis, the identified proteins were classified based on their putative functions and compared with the proteins from the other magnetotactic bacteria, Magnetospirillum magneticum AMB‐1 and M. gryphiswaldense MSR‐1. Three magnetosome‐specific proteins, MamA (Mms24), MamK, and MamM, were identified in strains RS‐1, AMB‐1, and MSR‐1. Furthermore, genes encoding ten magnetosome membrane proteins, including novel proteins, were assigned to a putative magnetosome island that contains subsets of genes essential for magnetosome formation. The collagen‐like protein and putative iron‐binding proteins, which are considered to play key roles in magnetite crystal formation, were identified as specific proteins in strain RS‐1. Furthermore, genes encoding two homologous proteins of Magnetococcus MC‐1 were assigned to a cryptic plasmid of strain RS‐1. The newly identified magnetosome membrane proteins might contribute to the formation of the unique irregular, bullet‐shaped crystals in this microorganism.  相似文献   

8.
Magnetospirillum gryphiswaldense and related magnetotactic bacteria form magnetosomes, which are membrane-enclosed organelles containing crystals of magnetite (Fe3O4) that cause the cells to orient in magnetic fields. The characteristic sizes, morphologies, and patterns of alignment of magnetite crystals are controlled by vesicles formed of the magnetosome membrane (MM), which contains a number of specific proteins whose precise roles in magnetosome formation have remained largely elusive. Here, we report on a functional analysis of the small hydrophobic MamGFDC proteins, which altogether account for nearly 35% of all proteins associated with the MM. Although their high levels of abundance and conservation among magnetotactic bacteria had suggested a major role in magnetosome formation, we found that the MamGFDC proteins are not essential for biomineralization, as the deletion of neither mamC, encoding the most abundant magnetosome protein, nor the entire mamGFDC operon abolished the formation of magnetite crystals. However, cells lacking mamGFDC produced crystals that were only 75% of the wild-type size and were less regular than wild-type crystals with respect to morphology and chain-like organization. The inhibition of crystal formation could not be eliminated by increased iron concentrations. The growth of mutant crystals apparently was not spatially constrained by the sizes of MM vesicles, as cells lacking mamGFDC formed vesicles with sizes and shapes nearly identical to those formed by wild-type cells. However, the formation of wild-type-size magnetite crystals could be gradually restored by in-trans complementation with one, two, and three genes of the mamGFDC operon, regardless of the combination, whereas the expression of all four genes resulted in crystals exceeding the wild-type size. Our data suggest that the MamGFDC proteins have partially redundant functions and, in a cumulative manner, control the growth of magnetite crystals by an as-yet-unknown mechanism.  相似文献   

9.
Magnetospirillum gryphiswaldense uses intracellular chains of membrane‐enveloped magnetite crystals, the magnetosomes, to navigate within magnetic fields. The biomineralization of magnetite nanocrystals requires several magnetosome‐associated proteins, whose precise functions so far have remained mostly unknown. Here, we analysed the functions of MamX and the Major Facilitator Superfamily (MFS) proteins MamZ and MamH. Deletion of either the entire mamX gene or elimination of its putative haem c‐binding magnetochrome domains, and deletion of either mamZ or its C‐terminal ferric reductase‐like component resulted in an identical phenotype. All mutants displayed WT‐like magnetite crystals, flanked within the magnetosome chains by poorly crystalline flake‐like particles partly consisting of haematite. Double deletions of both mamZ and its homologue mamH further impaired magnetite crystallization in an additive manner, indicating that the two MFS proteins have partially redundant functions. Deprivation of ΔmamX and ΔmamZ cells from nitrate, or additional loss of the respiratory nitrate reductase Nap from ΔmamX severely exacerbated the magnetosome defects and entirely inhibited the formation of regular crystals, suggesting that MamXZ and Nap have similar, but independent roles in redox control of biomineralization. We propose a model in which MamX, MamZ and MamH functionally interact to balance the redox state of iron within the magnetosome compartment.  相似文献   

10.
Magnetotactic bacteria (MTB) represent a group of diverse motile prokaryotes that biomineralize magnetosomes, the organelles responsible for magnetotaxis. Magnetosomes consist of intracellular, membrane‐bounded, tens‐of‐nanometre‐sized crystals of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4) and are usually organized as a chain within the cell acting like a compass needle. Most information regarding the biomineralization processes involved in magnetosome formation comes from studies involving Alphaproteobacteria species which biomineralize cuboctahedral and elongated prismatic crystals of magnetite. Many magnetosome genes, the mam genes, identified in these organisms are conserved in all known MTB. Here we present a comparative genomic analysis of magnetotactic Deltaproteobacteria that synthesize bullet‐shaped crystals of magnetite and/or greigite. We show that in addition to mam genes, there is a conserved set of genes, designated mad genes, specific to the magnetotactic Deltaproteobacteria, some also being present in Candidatus Magnetobacterium bavaricum of the Nitrospirae phylum, but absent in the magnetotactic Alphaproteobacteria. Our results suggest that the number of genes associated with magnetotaxis in magnetotactic Deltaproteobacteria is larger than previously thought. We also demonstrate that the minimum set of mam genes necessary for magnetosome formation in Magnetospirillum is also conserved in magnetite‐producing, magnetotactic Deltaproteobacteria. Some putative novel functions of mad genes are discussed.  相似文献   

11.
Aims: Intracellular magnetosome synthesis in magnetotactic bacteria has been proposed to be a process involving functions of a variety of proteins. To learn more about the genetic control that is involved in magnetosome formation, nonmagnetic mutants are screened and characterized. Methods and Results: Conjugation‐mediated transposon mutagenesis was applied to screen for nonmagnetic mutants of Magnetospirillum magneticum AMB‐1 that were unable to respond to the magnetic field. A mutant strain with disruption of a gene locus encoding nitric oxide reductase was obtained. Growth and magnetosome formation under different conditions were further characterized. Conclusions: Interruption of denitrification by inactivating nitric oxide reductase was responsible for the compromised growth and magnetosome formation in the mutant with shorter intracellular chains of magnetite crystals than those of wild‐type cells under anaerobic conditions. Nevertheless, the mutant displayed apparently normal growth in aerobic culture. Significance and Impact of the Study: Efficient denitrification in the absence of oxygen is not only necessary for maintaining cell growth but may also be required to derive sufficient energy to mediate the formation of magnetosome vesicles necessary for the initiation or activation of magnetite formation.  相似文献   

12.
The ability of magnetotactic bacteria (MTB) to orient and migrate along magnetic field lines is based on magnetosomes, which are membrane-enclosed intracellular crystals of a magnetic iron mineral. Magnetosome biomineralization is achieved by a process involving control over the accumulation of iron and deposition of the magnetic particle, which has a specific morphology, within a vesicle provided by the magnetosome membrane. In Magnetospirillum gryphiswaldense, the magnetosome membrane has a distinct biochemical composition and comprises a complex and specific subset of magnetosome membrane proteins (MMPs). Classes of MMPs include those with presumed function in magnetosome-directed uptake and binding of iron, nucleation of crystal growth, and the assembly of magnetosome membrane multiprotein complexes. Other MMPs comprise protein families of so far unknown function, which apparently are conserved between all other MTB. The mam and mms genes encode most of the MMPs and are clustered within several operons, which are part of a large, unstable genomic region constituting a putative magnetosome island. Current research is directed towards the biochemical and genetic analysis of MMP functions in magnetite biomineralization as well as their expression and localization during growth.Abbreviations MM Magnetosome membrane - MMP Magnetosome membrane protein - MTB Magnetotactic bacteria  相似文献   

13.
Magnetotactic bacteria (MTB) use magnetosomes, membrane-bound crystals of magnetite or greigite, for navigation along geomagnetic fields. In Magnetospirillum magneticum sp. AMB-1, and other MTB, a magnetosome gene island (MAI) is essential for every step of magnetosome formation. An 8-gene region of the MAI encodes several factors implicated in control of crystal size and morphology in previous genetic and proteomic studies. We show that these factors play a minor role in magnetite biomineralization in vivo. In contrast, MmsF, a previously uncharacterized magnetosome membrane protein encoded within the same region plays a dominant role in defining crystal size and morphology and is sufficient for restoring magnetite synthesis in the absence of the other major biomineralization candidates. In addition, we show that the 18 genes of the mamAB gene cluster of the MAI are sufficient for the formation of an immature magnetosome organelle. Addition of MmsF to these 18 genes leads to a significant enhancement of magnetite biomineralization and an increase in the cellular magnetic response. These results define a new biomineralization protein and lay down the foundation for the design of autonomous gene cassettes for the transfer of the magnetic phenotype in other bacteria.  相似文献   

14.
Magnetosomes are prokaryotic organelles produced by magnetotactic bacteria that consist of nanometer-sized magnetite (Fe3O4) or/and greigite (Fe3S4) magnetic crystals enveloped by a lipid bilayer membrane. In magnetite-producing magnetotactic bacteria, proteins present in the magnetosome membrane modulate biomineralization of the magnetite crystal. In these microorganisms, genes that encode for magnetosome membrane proteins as well as genes involved in the construction of the magnetite magnetosome chain, the mam and mms genes, are organized within a genomic island. However, partially because there are presently no greigite-producing magnetotactic bacteria in pure culture, little is known regarding the greigite biomineralization process in these organisms including whether similar genes are involved in the process. Here using culture-independent techniques, we now show that mam genes involved in the production of magnetite magnetosomes are also present in greigite-producing magnetotactic bacteria. This finding suggest that the biomineralization of magnetite and greigite did not have evolve independently (that is, magnetotaxis is polyphyletic) as once suggested. Instead, results presented here are consistent with a model in which the ability to biomineralize magnetosomes and the possession of the mam genes was acquired by bacteria from a common ancestor, that is, the magnetotactic trait is monophyletic.  相似文献   

15.
Understanding the biogeochemical cycle of the highly toxic element mercury (Hg) is necessary to predict its fate and transport. In this study, we determined that biogenic magnetite isolated from Magnetospirillum gryphiswaldense MSR-1 and Magnetospirillum magnetotacticum MS-1 was capable of reducing inorganic mercury [Hg(II)] to elemental mercury [Hg(0)]. These two magnetotactic bacteria (MTB) lacked mercuric resistance operons in the genomes. However, they revealed high resistance to Hg(II) under atmospheric conditions and an even higher resistance under microaerobic conditions (1% O2 and 99% N2). Neither strain reduced Hg(II) to Hg(0) under atmospheric conditions. However, a slow rate (0.05–0.21 µM·d?1) of Hg(II) loss occurred from late log phase to stationary phase in two MTBs' culture media under microaerobic conditions. Increased Hg(II) entered both cells under microaerobic conditions relative to atmospheric conditions. The majority of Hg(II) was still blocked by the cell membrane. Hg(II) reduction was more effective when biogenic magnetite was extracted out, with or without the magnetosome membrane envelope. When magnetosome membrane was present, 8.55–13.53% of 250 nM Hg(II) was reduced to Hg(0) by 250 mg/L biogenic magnetite suspension within 2 hours. This ratio increased to 55.07–64.70% while magnetosome membrane was removed. We concluded that two MTBs contributed to the reduction of Hg(II) to Hg(0) at a slow rate in vivo. Such reduction was more favorable to occur when biogenic magnetite is released from dead cells. It proposed a new biotic pathway for the formation of Hg(0) in aquatic systems.  相似文献   

16.
Magnetotactic bacteria are microaerophilic organisms found in sediments or stratified water columns at the oxic-anoxic transition zone or the anoxic regions below. They use magnetite-filled membrane vesicles, magnetosomes, to passively align with, and actively swim along, the geomagnetic field lines in a magneto-aerotactic search for the ideal concentration of molecular oxygen. Such an efficient chemotaxis needs magnetosomes that contain nearly perfect magnetite crystals. These magnetosomes originate as invaginations of the inner membrane and the empty vesicles are aligned in a chain by an actin-like protein. Subsequently, the vesicles are filled with iron, which then is converted to magnetite crystals. Until now it was unclear how such a process might be accomplished. In this issue, Uebe et al., 2011 unveil a part of this complicated bio-mineralization process. In Magnetospirillum gryphiswaldense, MamM and MamB, two members of the cation diffusion facilitator (CDF) transport protein family, are required for magnetite formation. MamM increases the stability of MamB by forming a heterodimer. The MamBM heterodimer strongly influences the biomineralization process by controlling the size and the shape of the crystals, and even the nature of the formed iron mineral. Thus, these two CDF proteins not only transport iron, but they also control the magnetite biomineralization.  相似文献   

17.
Magnetotactic bacteria contain nanometre-sized, membrane-bound organelles, called magnetosomes, which are tasked with the biomineralization of small crystals of the iron oxide magnetite allowing the organism to use geomagnetic field lines for navigation. A key player in this process is the HtrA/DegP family protease MamE. In its absence, Magnetospirillum magneticum str AMB-1 is able to form magnetosome membranes but not magnetite crystals, a defect previously linked to the mislocalization of magnetosome proteins. In this work we use a directed genetic approach to find that MamE, and another predicted magnetosome-associated protease, MamO, likely function as proteases in vivo. However, as opposed to the complete loss of mamE where no biomineralization is observed, the protease-deficient variant of this protein still supports the initiation and formation of small, 20 nm-sized crystals of magnetite, too small to hold a permanent magnetic dipole moment. This analysis also reveals that MamE is a bifunctional protein with a protease-independent role in magnetosome protein localization and a protease-dependent role in maturation of small magnetite crystals. Together, these results imply the existence of a previously unrecognized 'checkpoint' in biomineralization where MamE moderates the completion of magnetite formation and thus committal to magneto-aerotaxis as the organism's dominant mode of navigating the environment.  相似文献   

18.
The ability of magnetotactic bacteria (MTB) to orient in magnetic fields is based on the synthesis of magnetosomes, which are unique prokaryotic organelles comprising membrane-enveloped, nano-sized crystals of a magnetic iron mineral that are aligned in well-ordered intracellular chains. Magnetosome crystals have species-specific morphologies, sizes, and arrangements. The magnetosome membrane, which originates from the cytoplasmic membrane by invagination, represents a distinct subcellular compartment and has a unique biochemical composition. The roughly 20 magnetosome-specific proteins have functions in vesicle formation, magnetosomal iron transport, and the control of crystallization and intracellular arrangement of magnetite particles. The assembly of magnetosome chains is under genetic control and involves the action of an acidic protein that links magnetosomes to a novel cytoskeletal structure, presumably formed by a specific actin-like protein. A total of 28 conserved genes present in various magnetic bacteria were identified to be specifically associated with the magnetotactic phenotype, most of which are located in the genomic magnetosome island. The unique properties of magnetosomes attracted broad interdisciplinary interest, and MTB have recently emerged as a model to study prokaryotic organelle formation and evolution.  相似文献   

19.
Model genetic systems are invaluable, but limit us to understanding only a few organisms in detail, missing the variations in biological processes that are performed by related organisms. One such diverse process is the formation of magnetosome organelles by magnetotactic bacteria. Studies of model magnetotactic α-proteobacteria have demonstrated that magnetosomes are cubo-octahedral magnetite crystals that are synthesized within pre-existing membrane compartments derived from the inner membrane and orchestrated by a specific set of genes encoded within a genomic island. However, this model cannot explain all magnetosome formation, which is phenotypically and genetically diverse. For example, Desulfovibrio magneticus RS-1, a δ-proteobacterium for which we lack genetic tools, produces tooth-shaped magnetite crystals that may or may not be encased by a membrane with a magnetosome gene island that diverges significantly from those of the α-proteobacteria. To probe the functional diversity of magnetosome formation, we used modern sequencing technology to identify hits in RS-1 mutated with UV or chemical mutagens. We isolated and characterized mutant alleles of 10 magnetosome genes in RS-1, 7 of which are not found in the α-proteobacterial models. These findings have implications for our understanding of magnetosome formation in general and demonstrate the feasibility of applying a modern genetic approach to an organism for which classic genetic tools are not available.  相似文献   

20.
The magnetotactic bacterium Magnetospirillum magnetotacticum MS-1 mineralizes the magnetite (Fe3O4) crystal and organizes a highly ordered intracellular structure, called the magnetosome. However, the iron transport system, which supports the biogenesis of magnetite, is not fully understood. In this study, we first identified the expressions of both the ferric and the ferrous iron transporter proteins in M. magnetotacticum. The cellular protein compositions of ferric and ferrous iron-rich cultures were examined using two-dimensional electrophoresis. According to the gel patterns, two outer-membrane ferric-siderophore receptor homologues were identified as proteins strongly induced in the ferrous iron-rich condition. Also, we identified for the first time that the ferrous iron transport protein, FeoB, is expressed in the M. magnetotacticum cytoplasmic membrane using immunoblotting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号