首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
FtsZ, the bacterial homologue of eukaryotic tubulin, plays a central role in cell division in nearly all bacteria and many archaea. It forms filaments under the cytoplasmic membrane at the division site where, together with other proteins it recruits, it drives peptidoglycan synthesis and constricts the cell. Despite extensive study, the arrangement of FtsZ filaments and their role in division continue to be debated. Here, we apply electron cryotomography to image the native structure of intact dividing cells and show that constriction in a variety of Gram‐negative bacterial cells, including Proteus mirabilis and Caulobacter crescentus, initiates asymmetrically, accompanied by asymmetric peptidoglycan incorporation and short FtsZ‐like filament formation. These results show that a complete ring of FtsZ is not required for constriction and lead us to propose a model for FtsZ‐driven division in which short dynamic FtsZ filaments can drive initial peptidoglycan synthesis and envelope constriction at the onset of cytokinesis, later increasing in length and number to encircle the division plane and complete constriction.  相似文献   

2.
During division of Gram‐negative bacteria, invagination of the cytoplasmic membrane and inward growth of the peptidoglycan (PG) are followed by the cleavage of connective septal PG to allow cell separation. This PG splitting process requires temporal and spatial regulation of cell wall hydrolases. In Escherichia coli, LytM factors play an important role in PG splitting. Here we identify and characterize a member of this family (DipM) in Caulobacter crescentus. Unlike its E. coli counterparts, DipM is essential for viability under fast‐growth conditions. Under slow‐growth conditions, the ΔdipM mutant displays severe defects in cell division and FtsZ constriction. Consistent with its function in division, DipM colocalizes with the FtsZ ring during the cell cycle. Mutagenesis suggests that the LytM domain of DipM is essential for protein function, despite being non‐canonical. DipM also carries two tandems of the PG‐binding LysM domain that are sufficient for FtsZ ring localization. Localization and fluorescence recovery after photobleaching microscopy experiments suggest that DipM localization is mediated, at least in part, by the ability of the LysM tandems to distinguish septal, multilayered PG from non‐septal, monolayered PG.  相似文献   

3.
Cell division in Gram‐negative organisms requires coordinated invagination of the multilayered cell envelope such that each daughter receives an intact inner membrane, peptidoglycan (PG) layer and outer membrane (OM). Here, we identify DipM, a putative LytM endopeptidase in Caulobacter crescentus, and show that it plays a critical role in maintaining cell envelope architecture during growth and division. DipM localized to the division site in an FtsZ‐dependent manner via its PG‐binding LysM domains. Although not essential for viability, ΔdipM cells exhibited gross morphological defects, including cell widening and filamentation, indicating a role in cell shape maintenance and division that we show requires its LytM domain. Strikingly, cells lacking DipM also showed OM blebbing at the division site, at cell poles and along the cell body. Cryo electron tomography of sacculi isolated from cells depleted of DipM revealed marked thickening of the PG as compared to wild type, which we hypothesize leads to loss of trans‐envelope contacts between components of the Tol–Pal complex. We conclude that DipM is required for normal envelope invagination during division and to maintain a sacculus of constant thickness that allows for maintenance of OM connections throughout the cell envelope.  相似文献   

4.
The cytoskeletal GTPase FtsZ assembles at midcell, recruits the division machinery and directs envelope invagination for bacterial cytokinesis. ZapA, a conserved FtsZ‐binding protein, promotes Z‐ring stability and efficient division through a mechanism that is not fully understood. Here, we investigated the function of ZapA in Caulobacter crescentus. We found that ZapA is encoded in an operon with a small coiled‐coil protein we named ZauP. ZapA and ZauP co‐localized at the division site and were each required for efficient division. ZapA interacted directly with both FtsZ and ZauP. Neither ZapA nor ZauP influenced FtsZ dynamics or bundling, in vitro, however. Z‐rings were diffuse in cells lacking zapA or zauP and, conversely, FtsZ was enriched at midcell in cells overproducing ZapA and ZauP. Additionally, FtsZ persisted at the poles longer when ZapA and ZauP were overproduced, and frequently colocalized with MipZ, a negative regulator of FtsZ polymerization. We propose that ZapA and ZauP promote efficient cytokinesis by stabilizing the midcell Z‐ring through a bundling‐independent mechanism. The zauPzapA operon is present in diverse Gram‐negative bacteria, indicating a common mechanism for Z‐ring assembly.  相似文献   

5.
Cell division in Gram‐negative bacteria involves the co‐ordinated invagination of the three cell envelope layers to form two new daughter cell poles. This complex process starts with the polymerization of the tubulin‐like protein FtsZ into a Z‐ring at mid‐cell, which drives cytokinesis and recruits numerous other proteins to the division site. These proteins are involved in Z‐ring constriction, inner‐ and outer‐membrane invagination, peptidoglycan remodelling and daughter cell separation. Three papers in this issue of Molecular Microbiology, from the teams of Lucy Shapiro, Martin Thanbichler and Christine Jacobs‐Wagner, describe a novel protein, called DipM for Division Involved Protein with LysM domains, that is required for cell division in Caulobacter crescentus. DipM localizes to the mid‐cell during cell division, where it is necessary for the hydrolysis of the septal peptidoglycan to remodel the cell wall. Loss of DipM results in severe defects in cell envelope constriction, which is deleterious under fast‐growth conditions. State‐of‐the‐art microscopy experiments reveal that the peptidoglycan is thicker and that the cell wall is incorrectly organized in DipM‐depleted cells compared with wild‐type cells, demonstrating that DipM is essential for reorganizing the cell wall at the division site, for envelope invagination and cell separation in Caulobacter.  相似文献   

6.
Cell division in prokaryotes initiates with assembly of the Z‐ring at midcell, which, in Escherichia coli, is tethered to the inner leaflet of the cytoplasmic membrane through a direct interaction with FtsA, a widely conserved actin homolog. The Z‐ring is comprised of polymers of tubulin‐like FtsZ and has been suggested to provide the force for constriction. Here, we demonstrate that FtsA exerts force on membranes causing redistribution of membrane architecture, robustly hydrolyzes ATP and directly engages FtsZ polymers in a reconstituted system. Phospholipid reorganization by FtsA occurs rapidly and is mediated by insertion of a C‐terminal membrane targeting sequence (MTS) into the bilayer and further promoted by a nucleotide‐dependent conformational change relayed to the MTS. FtsA also recruits FtsZ to phospholipid vesicles via a direct interaction with the FtsZ C‐terminus and regulates FtsZ assembly kinetics. These results implicate the actin homolog FtsA in establishment of a Z‐ring scaffold, while directly remodeling the membrane and provide mechanistic insight into localized cell wall remodeling, invagination and constriction at the onset of division.  相似文献   

7.
In bacteria, cytokinesis is dependent on lytic enzymes that facilitate remodelling of the cell wall during constriction. In this work, we identify a thus far uncharacterized periplasmic protein, DipM, that is required for cell division and polarity in Caulobacter crescentus. DipM is composed of four peptidoglycan binding (LysM) domains and a C‐terminal lysostaphin‐like (LytM) peptidase domain. It binds to isolated murein sacculi in vitro, and is recruited to the site of constriction through interaction with the cell division protein FtsN. Mutational analyses showed that the LysM domains are necessary and sufficient for localization of DipM, while its peptidase domain is essential for function. Consistent with a role in cell wall hydrolysis, DipM was found to interact with purified murein sacculi in vitro and to induce cell lysis upon overproduction. Its inactivation causes severe defects in outer membrane invagination, resulting in a significant delay between cytoplasmic compartmentalization and final separation of the daughter cells. Overall, these findings indicate that DipM is a periplasmic component of the C. crescentus divisome that facilitates remodelling of the peptidoglycan layer and, thus, coordinated constriction of the cell envelope during the division process.  相似文献   

8.
Beuria TK  Margolin W 《Current biology : CB》2010,20(23):R1024-R1027
Most bacteria divide by assembling filaments of the tubulin-like protein FtsZ into a cytokinetic ring, which then constricts. A recent study suggests that Caulobacter crescentus uses a novel regulator, FzlA, to activate ring constriction by inducing helical bundles of FtsZ filaments.  相似文献   

9.
In most bacteria, the tubulin‐like GTPase FtsZ forms an annulus at midcell (the Z‐ring) which recruits the division machinery and regulates cell wall remodeling. Although both activities require membrane attachment of FtsZ, few membrane anchors have been characterized. FtsA is considered to be the primary membrane tether for FtsZ in bacteria, however in Caulobacter crescentus, FtsA arrives at midcell after stable Z‐ring assembly and early FtsZ‐directed cell wall synthesis. We hypothesized that additional proteins tether FtsZ to the membrane and demonstrate that in C. crescentus, FzlC is one such membrane anchor. FzlC associates with membranes directly in vivo and in vitro and recruits FtsZ to membranes in vitro. As for most known membrane anchors, the C‐terminal peptide of FtsZ is required for its recruitment to membranes by FzlC in vitro and midcell recruitment of FzlC in cells. In vivo, overproduction of FzlC causes cytokinesis defects whereas deletion of fzlC causes synthetic defects with dipM, ftsE and amiC mutants, implicating FzlC in cell wall hydrolysis. Our characterization of FzlC as a novel membrane anchor for FtsZ expands our understanding of FtsZ regulators and establishes a role for membrane‐anchored FtsZ in the regulation of cell wall hydrolysis.  相似文献   

10.
During the division process of Escherichia coli, the globular protein FtsZ is early recruited at the constriction site. The Z-ring, based on FtsZ filaments associated to the inner cell membrane, has been postulated to exert constriction forces. Membrane anchoring is mediated by ZipA, an essential transmembrane protein able to specifically bind FtsZ. In this work, an artificial complex of FtsZ–ZipA has been reconstituted at the inner side of spherical giant unilamellar vesicles made of E. coli lipids. Under these conditions, FtsZ polymerization, triggered when a caged GTP analogue is UV-irradiated, was followed by up to 40% vesicle inflation. The homogeneous membrane dilation was accompanied by the visualization of discrete FtsZ assemblies at the membrane. Complementary rheological data revealed enhanced elasticity under lateral dilation. This explains why vesicles can undergo large dilations in the regime of mechanical stability. A mechanical role for FtsZ polymers as promoters of membrane softening and plasticization is hypothesized.  相似文献   

11.
During Escherichia coli cell division, an intracellular complex of cell division proteins known as the Z-ring assembles at midcell during early division and serves as the site of constriction. While the predominant protein in the Z-ring is the widely conserved tubulin homolog FtsZ, the actin homolog FtsA tethers the Z-ring scaffold to the cytoplasmic membrane by binding to FtsZ. While FtsZ is known to function as a dynamic, polymerized GTPase, the assembly state of its partner, FtsA, and the role of ATP are still unclear. We report that a substitution mutation in the FtsA ATP-binding site impairs ATP hydrolysis, phospholipid vesicle remodeling in vitro, and Z-ring assembly in vivo. We demonstrate by transmission electron microscopy and Förster Resonance Energy Transfer that a truncated FtsA variant, FtsA(ΔMTS) lacking a C-terminal membrane targeting sequence, self assembles into ATP-dependent filaments. These filaments coassemble with FtsZ polymers but are destabilized by unassembled FtsZ. These findings suggest a model wherein ATP binding drives FtsA polymerization and membrane remodeling at the lipid surface, and FtsA polymerization is coregulated with FtsZ polymerization. We conclude that the coordinated assembly of FtsZ and FtsA polymers may serve as a key checkpoint in division that triggers cell wall synthesis and division progression.  相似文献   

12.
Sato M  Nishikawa T  Kajitani H  Kawano S 《Planta》2007,227(1):177-187
Cyanelles of the biflagellate protist Cyanophora paradoxa have retained the peptidoglycan layer, which is critical for division, as indicated by the inhibitory effects of β-lactam antibiotics. An FtsZ ring is formed at the division site during cyanelle division. We used immunofluorescence microscopy to observe the process of FtsZ ring formation, which is expected to lead cyanelle division, and demonstrated that an FtsZ arc and a split FtsZ ring emerge during the early and late stages of cyanelle division, respectively. We used an anti-FtsZ antibody to observe cyanelle FtsZ rings. We observed bright, ring-shaped fluorescence of FtsZ in cyanelles. Cyanelles were kidney-shaped shortly after division. Fluorescence indicated that FtsZ did not surround the division plane at an early stage of division, but rather formed an FtsZ arc localized at the constriction site. The constriction spread around the cyanelle, which gradually became dumbbell shaped. After the envelope’s invagination, the ring split parallel to the cyanelle division plane without disappearing. Treatment of C. paradoxa cells with ampicillin, a β-lactam antibiotic, resulted in spherical cyanelles with an FtsZ arc or ring on the division plane. Transmission electron microscopy of the ampicillin-treated cyanelle envelope membrane revealed that the surface was not smooth. Thus, the inhibition of peptidoglycan synthesis by ampicillin causes the inhibition of septum formation and a marked delay in constriction development. The formation of the FtsZ arc and FtsZ ring is the earliest sign of cyanelle division, followed by constriction and septum formation.  相似文献   

13.
The division of Escherichia coli is mediated by a collection of some 34 different proteins that are recruited to the division septum and are thought to assemble into a macromolecular complex known as ‘the divisome’. Herein, we have endeavored to better understand the structure of the divisome by imaging two of its core components; FtsZ and FtsN. Super resolution microscopy (SIM and gSTED) indicated that both proteins are localized in large assemblies, which are distributed around the division septum (i.e., forming a discontinuous ring). Although the rings had similar radii prior to constriction, the individual densities were often spatially separated circumferentially. As the cell envelope constricted, the discontinuous ring formed by FtsZ moved inside the discontinuous ring formed by FtsN. The radial and circumferential separation observed in our images indicates that the majority of FtsZ and FtsN molecules are organized in different macromolecular assemblies, rather than in a large super‐complex. This conclusion was supported by fluorescence recovery after photobleaching measurements, which indicated that the dynamic behavior of the two macromolecular assemblies was also fundamentally different. Taken together, the data indicates that constriction of the cell envelope is brought about by (at least) two spatially separated complexes.  相似文献   

14.
Bacterial division begins with the formation of a contractile protein ring at midcell, which constricts the bacterial envelope to generate two daughter cells. The central component of the division ring is FtsZ, a tubulin-like protein capable of self-assembling into filaments which further associate into a higher order structure known as the Z ring. Proteins that bind to FtsZ play a crucial role in the formation and regulation of the Z ring. One such protein is ZapA, a widely conserved 21 kDa homodimeric protein that associates with FtsZ filaments and promotes their bundling. Although ZapA was discovered more than a decade ago, the structural details of its interaction with FtsZ remain unknown. In this work, backbone and side chain NMR assignments for the Geobacillus stearothermophilus ZapA homodimer are described. We titrated FtsZ into 15N2H-ZapA and mapped ZapA residues whose resonances are perturbed upon FtsZ binding. This information provides a structural understanding of the interaction between FtsZ and ZapA.  相似文献   

15.
Escherichia coli cells that contain the pss-93 null mutation are completely deficient in the major membrane phospholipid phosphatidylethanolamine (PE). Such cells are defective in cell division. To gain insight into how a phospholipid defect could block cytokinesis, we used fluorescence techniques on whole cells to investigate which step of the cell division cycle was affected. Several proteins essential for early steps in cytokinesis, such as FtsZ, ZipA, and FtsA, were able to localize as bands to potential division sites in pss-93 filaments, indicating that the generation and localization of potential division sites was not grossly affected by the absence of PE. However, there was no evidence of constriction at most of these potential division sites. FtsZ and green fluorescent protein (GFP) fusions to FtsZ and ZipA often formed spiral structures in these mutant filaments. This is the first report of spirals formed by wild-type FtsZ expressed at normal levels and by ZipA-GFP. The results suggest that the lack of PE may affect the correct interaction of FtsZ with membrane nucleation sites and alter FtsZ ring structure so as to prevent or delay its constriction.  相似文献   

16.
Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z‐ring at the division site. Here, we show that lack of the ParA‐like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome‐free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z‐rings and incorrect positioning of the few Z‐rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z‐ring formation and is a spatial regulator of Z‐ring formation and cell division. The cell cycle‐dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z‐ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z‐ring formation to this position.  相似文献   

17.
The mechanisms that restrict peptidoglycan biosynthesis to the pole during elongation and re‐direct peptidoglycan biosynthesis to mid‐cell during cell division in polar‐growing Alphaproteobacteria are largely unknown. Here, we explore the role of early division proteins of Agrobacterium tumefaciens including three FtsZ homologs, FtsA and FtsW in the transition from polar growth to mid‐cell growth and ultimately cell division. Although two of the three FtsZ homologs localize to mid‐cell, exhibit GTPase activity and form co‐polymers, only one, FtsZAT, is required for cell division. We find that FtsZAT is required not only for constriction and cell separation, but also for initiation of peptidoglycan synthesis at mid‐cell and cessation of polar peptidoglycan biosynthesis. Depletion of FtsZAT in A. tumefaciens causes a striking phenotype: cells are extensively branched and accumulate growth active poles through tip splitting events. When cell division is blocked at a later stage by depletion of FtsA or FtsW, polar growth is terminated and ectopic growth poles emerge from mid‐cell. Overall, this work suggests that A. tumefaciens FtsZ makes distinct contributions to the regulation of polar growth and cell division.  相似文献   

18.
Bacterial cell division is orchestrated by the Z ring, which is formed by single‐stranded treadmilling protofilaments of FtsZ. In Streptomyces, during sporulation, multiple Z rings are assembled and lead to formation of septa that divide a filamentous hyphal cell into tens of prespore compartments. We describe here mutant alleles of ftsZ in Streptomyces coelicolor and Streptomyces venezuelae that perturb cell division in such a way that constriction is initiated along irregular spiral‐shaped paths rather than as regular septa perpendicular to the cell length axis. This conspicuous phenotype is caused by amino acid substitutions F37I and F37R in β strand S2 of FtsZ. The F37I mutation leads, instead of regular Z rings, to formation of relatively stable spiral‐shaped FtsZ structures that are capable of initiating cell constriction. Further, we show that the F37 mutations affect the polymerization properties and impair the cooperativity of FtsZ assembly in vitro. The results suggest that specific residues in β strand S2 of FtsZ affect the conformational switch in FtsZ that underlies assembly cooperativity and enable treadmilling of protofilaments, and that these features are required for formation of regular Z rings. However, the data also indicate FtsZ‐directed cell constriction is not dependent on assembly cooperativity.  相似文献   

19.
During plastid division, the dynamin-related protein ACCUMULATION AND REPLICATION OF CHLOROPLASTS5 (ARC5) is recruited from the cytosol to the surface of the outer chloroplast envelope membrane. In Arabidopsis thaliana arc5 mutants, chloroplasts arrest during division site constriction. Analysis of mutants similar to arc5 along with map-based cloning identified PLASTID DIVISION1 (PDV1), an integral outer envelope membrane protein, and its homolog PDV2 as components of the plastid division machinery. Similar to ARC5, PDV1 localized to a discontinuous ring at the division site in wild-type plants. The midplastid PDV1 ring formed in arc5 mutants and the ARC5 ring formed in pdv1 and pdv2 mutants, but not in pdv1 pdv2. Stromal FtsZ ring assembly occurred in pdv1, pdv2, and pdv1 pdv2, as it does in arc5. Topological analysis showed that the large N-terminal region of PDV1 upstream of the transmembrane helix bearing a putative coiled-coil domain is exposed to the cytosol. Mutation of the conserved PDV1 C-terminal Gly residue did not block PDV1 insertion into the outer envelope membrane but did abolish its localization to the division site. Our results indicate that plastid division involves the stepwise localization of FtsZ, PDV1, and ARC5 at the division site and that PDV1 and PDV2 together mediate the recruitment of ARC5 to the midplastid constriction at a late stage of division.  相似文献   

20.
The earliest stage of cell division in bacteria is the formation of a Z ring, composed of a polymer of the FtsZ protein, at the division site. Z rings appear to be synthesized in a bi‐directional manner from a nucleation site (NS) located on the inside of the cytoplasmic membrane. It is the utilization of a NS specifically at the site of septum formation that determines where and when division will occur. However, a Z ring can be made to form at positions other than at the division site. How does a cell regulate utilization of a NS at the correct location and at the right time? In rod‐shaped bacteria such as Escherichia coli and Bacillus subtilis, two factors involved in this regulation are the Min system and nucleoid occlusion. It is suggested that in B. subtilis, the main role of the Min proteins is to inhibit division at the nucleoid‐free cell poles. In E. coli it is currently not clear whether the Min system can direct a Z ring to the division site at mid‐cell or whether its main role is to ensure that division inhibition occurs away from mid‐cell, a role analogous to that in B. subtilis. While the nucleoid negatively influences Z‐ring formation in its vicinity in these rod‐shaped organisms, the exact relationship between nucleoid occlusion and the ability to form a mid‐cell Z ring is unresolved. Recent evidence suggests that in B. subtilis and Caulobacter crescentus, utilization of the NS at the division site is intimately linked to the progress of a round of chromosome replication and this may form the basis of achieving co‐ordination between chromosome replication and cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号