首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In monolayers of cultured rat astrocytes a number of agents that induce oxidative stress act synergistically with exposure to copper leading to rapid depolarization of the mitochondrial membrane potential (Psi m) and increased reactive oxygen species (ROS) production. Copper sensitized astrocytes to the action of menadione, an intracellular generator of superoxide anion radical, exogenous hydrogen peroxide (H2O2) and rotenone, an inhibitor of mitochondrial electron transport chain complex I. However, significant differences were observed in the ability to modulate the copper-enhanced oxidative stress depending on which stressor was used. The inhibitor of mitochondrial permeability transition cyclosporin A attenuated the effect of copper and rotenone, but had no protective action in the case of H2O2/copper and menadione/copper combinations. The H2O2 scavenger pyruvate was effective at protecting mitochondria against damage associated with the combined exposure to H2O2/copper and menadione/copper but not to the rotenone/copper combination. The antioxidant Trolox was ineffective at protecting against any of these actions and indeed had a damaging effect when combined with copper. The membrane-permeable copper chelator neocuproine combined with sensitizing concentrations of menadione caused a decrease in Psi m, mimicking the action of copper. Penicillamine, a membrane-impermeable copper chelator, was effective at reducing copper sensitization. Endogenous copper, mobilized during periods of oxidative stress, may play a role in the pathophysiology of brain injury. Our results suggest that this might be particularly dangerous in dysfunctional conditions in which the mitochondrial electron transport chain is compromised.  相似文献   

2.
coq7/clk-1 was isolated from a long-lived mutant of Caenorhabditis elegans, and shows sluggish behaviours and an extended lifespan. In C. elegans and Saccharomyces cerevisiae, coq7/clk-1 is required for the biosynthesis of coenzyme Q (CoQ), an essential co-factor in mitochondrial respiration. The clk-1 mutant contains dietary CoQ(8) from Escherichia coli and demethoxyubiquinone 9 (DMQ9) instead of CoQ(9). In a previous study, we generated COQ7-deficient mice by targeted disruption of the coq7 gene and reported that mouse coq7/clk-1 is also essential for CoQ synthesis, maintenance of mitochondrial integrity and neurogenesis. In the present study, we rescued COQ7-deficient mice from embryonic lethality and established a mouse model with decreased CoQ level by transgene expression of COQ7/CLK-1. A biochemical analysis showed a concomitant decrease in CoQ(9), mitochondrial respiratory enzyme activity and the generation of reactive oxygen species (ROS) in the mitochondria of CoQ-insufficient mice. This implied that the depressed activity of respiratory enzymes and the depressed production of ROS may play a physiological role in the control of lifespan in mammalian species and of C. elegans.  相似文献   

3.
Striatin-interacting phosphatases and kinases (STRIPAKs) are evolutionarily conserved supramolecular complexes that control various important cellular processes such as signal transduction and development. However, the role of the STRIPAK complex in pathogenic fungi remains elusive. In this study, the components and function of the STRIPAK complex were investigated in Fusarium graminearum, an important plant-pathogenic fungus. The results obtained from bioinformatic analyses and the protein–protein interactome suggested that the fungal STRIPAK complex consisted of six proteins: Ham2, Ham3, Ham4, PP2Aa, Ppg1, and Mob3. Deletion mutations of individual components of the STRIPAK complex were created, and observed to cause a significant reduction in fungal vegetative growth and sexual development, and dramatically attenuae virulence, excluding the essential gene PP2Aa. Further results revealed that the STRIPAK complex interacted with the mitogen-activated protein kinase Mgv1, a key component in the cell wall integrity pathway, subsequently regulating the phosphorylation level and nuclear accumulation of Mgv1 to control the fungal stress response and virulence. Our results also suggested that the STRIPAK complex was interconnected with the target of rapamycin pathway through Tap42-PP2A cascade. Taken together, our findings revealed that the STRIPAK complex orchestrates cell wall integrity signalling to govern the fungal development and virulence of F. graminearum and highlighted the importance of the STRIPAK complex in fungal virulence.  相似文献   

4.
5.
Reactive oxygen species (ROS) are involved in the pathogen-host interactions, and play a Janus-faced role in the resistance and susceptibility of plants to biotrophic and necrotrophic pathogens. The ascomycete fungus Fusarium graminearum causes hazardous wheat Fusarium head blight worldwide. Deletion of the putative secreted catalase-peroxidase gene in F. graminearum, KatG2, reduced the virulence in wheat spike infection. However, it remains unclear when and where KatG2 scavenges ROS during the invasion of wheat. In this study, we delineate the change in ROS levels in the transition of the infection phase under microscopic observation. Correspondingly, the pathogen switches its strategy of infection with temporal and spatial regulation of KatG2 to counteract oxidative stress generated by host plant cells. With the native promoter-driven KatG2-mRFP strain, we show that KatG2-mRFP expression was induced in planta and accumulated in the infection front region at the early infection stage. In contrast to its ubiquitous cellular localization in runner hyphae, KatG2-mRFP is exclusively located on the cell wall of invading hyphal cells, especially at the pathogen-host cellular interface. Using posttranslational modification analysis, we found that asparagine residues at the 238 and 391 positions of KatG2 could be modified by N-glycosylation and that these two residues are required for KatG2 accumulation and cell wall localization in planta.  相似文献   

6.
* Cadmium (Cd(2+)) is an environmental pollutant that causes increased reactive oxygen species (ROS) production. To determine the site of ROS production, the effect of Cd(2+) on ROS production was studied in isolated soybean (Glycine max) plasma membranes, potato (Solanum tuberosum) tuber mitochondria and roots of intact seedlings of soybean or cucumber (Cucumis sativus). * The effects of Cd(2+) on the kinetics of superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and hydroxyl radical ((*OH) generation were followed using absorption, fluorescence and spin-trapping electron paramagnetic resonance spectroscopy. * In isolated plasma membranes, Cd(2+) inhibited O2*- production. This inhibition was reversed by calcium (Ca(2+)) and magnesium (Mg(2+)). In isolated mitochondria, Cd(2+) increased and H(2)O(2) production. In intact roots, Cd(2+) stimulated H(2)O(2) production whereas it inhibited O2*- and (*)OH production in a Ca(2+)-reversible manner. * Cd(2+) can be used to distinguish between ROS originating from mitochondria and from the plasma membrane. This is achieved by measuring different ROS individually. The immediate (相似文献   

7.
Fusarium graminearum, as the causal agent of Fusarium head blight (FHB), not only causes yield loss, but also contaminates the quality of wheat by producing mycotoxins, such as deoxynivalenol (DON). The plasma membrane H+-ATPases play important roles in many growth stages in plants and yeasts, but their functions and regulation in phytopathogenic fungi remain largely unknown. Here we characterized two plasma membrane H+-ATPases: FgPMA1 and FgPMA2 in Fgraminearum. The FgPMA1 deletion mutant (∆FgPMA1), but not FgPMA2 deletion mutant (∆FgPMA2), was impaired in vegetative growth, pathogenicity, and sexual and asexual development. FgPMA1 was localized to the plasma membrane, and ∆FgPMA1 displayed reduced integrity of plasma membrane. ∆FgPMA1 not only impaired the formation of the toxisome, which is a compartment where DON is produced, but also suppressed the expression level of DON biosynthetic enzymes, decreased DON production, and decreased the amount of mycelial invasion, leading to impaired pathogenicity by exclusively developing disease on inoculation sites of wheat ears and coleoptiles. ∆FgPMA1 exhibited decreased sensitivity to some osmotic stresses, a cell wall-damaging agent (Congo red), a cell membrane-damaging agent (sodium dodecyl sulphate), and heat shock stress. FgMyo-5 is the target of phenamacril used for controlling FHB. We found FgPMA1 interacted with FgMyo-5, and ∆FgPMA1 showed an increased expression level of FgMyo-5, resulting in increased sensitivity to phenamacril, but not to other fungicides. Furthermore, co-immunoprecipitation confirmed that FgPMA1, FgMyo-5, and FgBmh2 (a 14-3-3 protein) form a complex to regulate the sensitivity to phenamacril and biological functions. Collectively, this study identified a novel regulating mechanism of FgPMA1 in pathogenicity and phenamacril sensitivity of F. graminearum.  相似文献   

8.
9.
10.
Regardless of rapid progression in the field of autophagy, it remains a challenging task to understand the cross talk with apoptosis. In this study, we overexpressed Ulk1 in HeLa cells and evaluated the apoptosis-inducing potential of the Ulk1 gene in the presence of cisplatin. The gain of function of Ulk1 gene showed a decline in cell viability and colony formation in HeLa cells. The Ulk1-overexpressing cells showed higher apoptotic attributes by an increase in the percentage of annexin V, escalated expression of Bax/Bcl2 ratio, and caspase-9, -3/7 activities. Further, reactive oxygen species (ROS) generation was found to be much higher in HeLa-Ulk1 than in the mock group. Scavenging the ROS by N-acetyl-L-cysteine increased cell viability and colony number as well as mitochondrial membrane potential (MMP). Our data showed that Ulk1 on entering into mitochondria inhibits the manganese dismutase activity and intensifies the mitochondrial superoxide level. The Ulk1-triggered autophagy (particularly mitophagy) resulted in a fall in ATP; thus the nonmitophagic mitochondria overwork the electron-transport cycle to replenish energy demand and are inadvertently involved in ROS overproduction that led to apoptosis. In this present investigation, our results decipher a previously unrecognized perspective of apoptosis induction by a key autophagy protein Ulk1 that may contribute to identification of its tumor-suppressor properties through dissecting the connection among cellular bioenergetics, ROS, and MMP.  相似文献   

11.
12.
Objective: We have previously shown 1α,25‐dihydroxyvitamin D3 [1α,25‐(OH)2D3] to inhibit mitochondrial uncoupling protein 2 (UCP2) expression in adipocytes and that in vivo suppression of calcitriol levels with calcium‐rich diets increases UCP2 expression. Because UCP2 plays a significant role in the clearance of reactive oxygen species (ROS), we studied the effect of calcitriol on ROS production and ROS‐induced adipocyte proliferation. Research Methods and Procedures: ROS production in human and murine adipocytes was stimulated by high glucose (30 mM) or H2O2 (100 nM). Results: Both approaches resulted in increased ROS production by 27% to 100% (p < 0.05) and increased cell proliferation by 15% to 39% (p < 0.03). These effects were augmented by the addition of mitochondrial uncoupling inhibitor guanosine 5′‐diphosphate (GDP; 100 μM) or 1α,25‐(OH)2D3 (10 nM) and attenuated by UCP2 overexpression, suggesting that inhibition of mitochondrial uncoupling suppresses clearance of ROS and increases adipocyte proliferation. The addition of α ± tocopherol (1 μM) inhibited cell proliferation in adipocytes treated with either H2O2 or high glucose, indicating that ROS plays a major role in the regulation of cell proliferation in adipocytes. Moreover, stimulation of ROS with high glucose and H2O2 resulted in a 2‐ to 5‐fold increase in adipocyte intracellular calcium ([Ca2+]i; p < 0.001), and calcium channel antagonism (nifedipine, 10 μM) suppressed ROS induced calcium influx and cell proliferation, indicating that [Ca2+]i may also regulate ROS production and exert a mitogenic effect in adipocytes. Discussion: These data support a role of 1α,25‐(OH)2D3, UCP2, and [Ca2+]i in the regulation of adipocyte ROS production.  相似文献   

13.
目的:旨在敲除禾谷镰刀菌Fusarium graminearum Fg PDE1基因,确定其缺失突变体表型,从而分析该基因的生物学功能。方法:应用Split-marker技术构建含有潮霉素基因敲除盒,通过PEG介导原生质体转化,PCR筛查抗潮霉素转化子以获得缺失突变体ΔFg PDE1,根据突变体表型变化及致病性的检测对Fg PDE1基因的功能进行分析。结果:采用Split-marker技术,成功构建了Fg PDE1基因敲除盒;PEG介导转化禾谷镰刀菌原生质体后成功获得转化子。经PCR筛查,得到3个PCR确认的敲除突变体;表型观察发现,ΔFg PDE1菌落的外型及菌落生长速度与野生型没有明显差异。孢子侵染西红柿果实实验证明:以西红柿为侵染宿主,相对于野生型,突变体致病性没有明显减弱;但突变体分生孢子产量显著下降。结论:Fg PDE1基因可能与禾谷镰刀菌分生孢子的形成有关。  相似文献   

14.
This study was aimed at exploring the underlying mechanisms of ketamine in the SV-40 immortalized human ureteral epithelial (SV-HUC-1) cells. The viability and apoptosis of SV-HUC-1 cells treated with 0.01, 0.1, and 1 mM ketamine were respectively detected via cell counting kit-8 (CCK-8) assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining. Reactive oxygen species (ROS) level was measured through ROS probe staining. Apoptosis-related proteins (B-cell lymphoma 2 [Bcl-2] and Bax) and autophagy-associated proteins (light chain 3-I [LC3-I] and LC3-II) were determined by western blot or immunofluorescent assay. Additionally, transmission electron microscopy (TEM) was used to evaluate the formation of autophagosomes. After cotreatment of 3-methyladenine (3-MA) or N-acetyl-l -cysteine (NAC), the biological functions of SV-HUC-1 cells were analyzed to determine the association of ROS with cell viability and autophagy. CCK-8 assay and TUNEL staining indicated that ketamine effectively decreased the viability of SV-HUC-1 cells and accelerated apoptosis of SV-HUC-1 cells through regulating the expression level of IKBα (phospho), nuclear factor кB (P65), Bcl-2, and Bax proteins. Enhanced ROS production was also confirmed in ketamine-treated SV-HUC-1 cells treated with ketamine. Ketamine-induced autophagosomes in SV-HUC-1 cells were observed by means of TEM, and increased levels of LC3 II/I ratio and Beclin 1 were examined through western blot and immunofluorescent assay. Furthermore, ketamine exerted effects on SV-HUC-1 cells in a dose-dependent and time-dependent manner. Additionally, cotreatment of NAC with 3-MA significantly attenuated the ROS level and suppressed the cell autophagy. Ketamine promoted SV-HUC-1 cell autophagy and impaired the cell viability of SV-HUC-1 cells by inducing ROS.  相似文献   

15.
The present study was undertaken in order to determine the effect of low frequency electromagnetic field (EMF) on reactive oxygen species (ROS) production in human neutrophils in peripheral blood in vitro. We investigated how differently generated EMF and several levels of magnetic induction affect ROS production. To evaluate the level of ROS production, two fluorescent dyes were used: 2′7′-dichlorofluorscein-diacetate and dihydrorhodamine. Phorbol 12-myristate 13-acetate (PMA), known as strong stimulator of the respiratory burst, was also used. Alternating magnetic field was generated by means of Viofor JPS apparatus. Three different levels of magnetic induction have been analyzed (10, 40 and 60 μT). Fluorescence of dichlorofluorescein and 123 rhodamine was measured by flow cytometry. The experiments demonstrated that only EMF tuned to the calcium ion cyclotron resonance frequency was able to affect ROS production in neutrophils. Statistical analysis showed that this effect depended on magnetic induction value of applied EMF. Incubation in EMF inhibited cell activity slightly in unstimulated neutrophils, whereas the activity of PMA-stimulated neutrophils has increased after incubation in EMF.  相似文献   

16.
NOD-like receptors (NLRs) are a family of intracellular sensors of microbial- or danger-associated molecular patterns. Here, we report the identification of NLRX1, which is a new member of the NLR family that localizes to the mitochondria. NLRX1 alone failed to trigger most of the common signalling pathways, including nuclear factor-kappaB (NF)-kappaB- and type I interferon-dependent cascades, but could potently trigger the generation of reactive oxygen species (ROS). Importantly, NLRX1 synergistically potentiated ROS production induced by tumour necrosis factor alpha, Shigella infection and double-stranded RNA, resulting in amplified NF-kappaB-dependent and JUN amino-terminal kinases-dependent signalling. Together, these results identify NLRX1 as a NLR that contributes to the link between ROS generation at the mitochondria and innate immune responses.  相似文献   

17.
Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial . Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.  相似文献   

18.
The air pollutant ozone can be used as a tool to unravel in planta processes induced by reactive oxygen species (ROS). Here, we have utilized ozone to study ROS‐dependent stomatal signaling. We show that the ozone‐triggered rapid transient decrease (RTD) in stomatal conductance coincided with a burst of ROS in guard cells. RTD was present in 11 different Arabidopsis ecotypes, suggesting that it is a genetically robust response. To study which signaling components or ion channels were involved in RTD, we tested 44 mutants deficient in various aspects of stomatal function. This revealed that the SLAC1 protein, essential for guard cell plasma membrane S‐type anion channel function, and the protein kinase OST1 were required for the ROS‐induced fast stomatal closure. We showed a physical interaction between OST1 and SLAC1, and provide evidence that SLAC1 is phosphorylated by OST1. Phosphoproteomic experiments indicated that OST1 phosphorylated multiple amino acids in the N terminus of SLAC1. Using TILLING we identified three new slac1 alleles where predicted phosphosites were mutated. The lack of RTD in two of them, slac1‐7 (S120F) and slac1‐8 (S146F), suggested that these serine residues were important for the activation of SLAC1. Mass‐spectrometry analysis combined with site‐directed mutagenesis and phosphorylation assays, however, showed that only S120 was a specific phosphorylation site for OST1. The absence of the RTD in the dominant‐negative mutants abi1‐1 and abi2‐1 also suggested a regulatory role for the protein phosphatases ABI1 and ABI2 in the ROS‐induced activation of the S‐type anion channel.  相似文献   

19.
《Free radical research》2013,47(4):374-382
Abstract

Mitochondrial reactive oxygen species (ROS) is a key element in the regulation of several physiological functions and in the development or progression of multiple pathological events. A key task in the study of mitochondrial ROS is to establish reliable methods for measuring the ROS level in mitochondria with high selectivity, sensitivity, and spatiotemporal resolution. Over the last decade, imaging tools with fluorescent indicators from either small-molecule dyes or genetically encoded probes that can be targeted to mitochondria have been developed, which provide a powerful method to visualize and even quantify mitochondrial ROS level not only in live cells, but also in live animals. These innovative tools that have bestowed exciting new insights in mitochondrial ROS biology have been further promoted with the invention of new techniques in indicator design and fluorescent detection. However, these probes present some limitations in terms of specificity, sensitivity, and kinetics; failure to recognize these limitations often results in inappropriate interpretations of data. This review evaluates the recent advances in mitochondrial ROS imaging approaches with emphasis on their proper application and limitations, and highlights the future perspectives in the development of novel fluorescent probes for visualizing all species of ROS.  相似文献   

20.
Deoxynivalenol (DON) is an important trichothecene mycotoxin produced by the cereal pathogen Fusarium graminearum. DON is synthesized in organized endoplasmic reticulum structures called toxisomes. However, the mechanism for toxisome formation and the components of toxisomes are not yet fully understood. In a previous study, we found that myosin I (FgMyo1)-actin cytoskeleton participated in toxisome formation. In the current study, we identified two new components of toxisomes, the actin capping proteins (CAPs) FgCapA and FgCapB. These two CAPs form a heterodimer in F. graminearum, and physically interact with FgMyo1 and Tri1. The deletion mutants ΔFgcapA and ΔFgcapB and the double deletion mutant ΔΔFgcapA/B dramatically reduced hyphal growth, asexual and sexual reproduction and endocytosis. More importantly, the deletion mutants markedly disrupted toxisome formation and DON production, and attenuated virulence in planta. Collectively, these results suggest that the actin CAPs are associated with toxisome formation and contribute to the virulence and development of F. graminearum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号