首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EndA is a sequence non-specific endonuclease that serves as a virulence factor during Streptococcus pneumoniae infection. Expression of EndA provides a strategy for evasion of the host''s neutrophil extracellular traps, digesting the DNA scaffold structure and allowing further invasion by S. pneumoniae. To define mechanisms of catalysis and substrate binding, we solved the structure of EndA at 1.75 Å resolution. The EndA structure reveals a DRGH (Asp-Arg-Gly-His) motif-containing ββα-metal finger catalytic core augmented by an interesting ‘finger-loop’ interruption of the active site α-helix. Subsequently, we delineated DNA binding versus catalytic functionality using structure-based alanine substitution mutagenesis. Three mutants, H154A, Q186A and Q192A, exhibited decreased nuclease activity that appears to be independent of substrate binding. Glu205 was found to be crucial for catalysis, while residues Arg127/Lys128 and Arg209/Lys210 contribute to substrate binding. The results presented here provide the molecular foundation for development of specific antibiotic inhibitors for EndA.  相似文献   

2.
Peptidyl-tRNA hydrolase is an essential enzyme which acts as one of the rescue factors of the stalled ribosomes. It is an esterase that hydrolyzes the ester bond in the peptidyl-tRNA molecules, which are products of ribosome stalling. This enzyme is required for rapid clearing of the peptidyl-tRNAs, the accumulation of which in the cell leads to cell death. Over the recent years, it has been heralded as an attractive drug target for antimicrobial therapeutics. Two distinct classes of peptidyl-tRNA hydrolase, Pth and Pth2, have been identified in nature. This review gives an overview of the structural and functional aspects of Pth, along with its sequence and structural comparison among various species of bacteria. While the mode of binding of the substrate to Pth and the mechanism of hydrolysis are still speculated upon, the structure-based drug design using this protein as the target is still largely unexplored. This review focuses on the structural features of Pth, giving a direction to structure-based drug design on this protein.  相似文献   

3.
4.
The amidinourea 8918 was recently reported to inhibit the type II phosphopantetheinyl transferase (PPTase) of Mycobacterium tuberculosis (Mtb), PptT, a potential drug‐target that activates synthases and synthetases involved in cell wall biosynthesis and secondary metabolism. Surprisingly, high‐level resistance to 8918 occurred in Mtb harboring mutations within the gene adjacent to pptT, rv2795c, highlighting the role of the encoded protein as a potentiator of the bactericidal action of the amidinourea. Those studies revealed that Rv2795c (PptH) is a phosphopantetheinyl (PpT) hydrolase, possessing activity antagonistic with respect to PptT. We have solved the crystal structure of Mtb's phosphopantetheinyl hydrolase, making it the first phosphopantetheinyl (carrier protein) hydrolase structurally characterized. The 2.5 Å structure revealed the hydrolases' four‐layer (α/β/β/α) sandwich fold featuring a Mn‐Fe binuclear center within the active site. A structural similarity search confirmed that PptH most closely resembles previously characterized metallophosphoesterases (MPEs), particularly within the vicinity of the active site, suggesting that it may utilize a similar catalytic mechanism. In addition, analysis of the structure has allowed for the rationalization of the previously reported PptH mutations associated with 8918‐resistance. Notably, differences in the sequences and predicted structural characteristics of the PpT hydrolases PptH of Mtb and E. coli's acyl carrier protein hydrolase (AcpH) indicate that the two enzymes evolved convergently and therefore are representative of two distinct PpT hydrolase families.  相似文献   

5.
Structural insights into the catalytic mechanism of cyclophilin A   总被引:7,自引:0,他引:7  
Cyclophilins constitute a ubiquitous protein family whose functions include protein folding, transport and signaling. They possess both sequence-specific binding and proline cis-trans isomerase activities, as exemplified by the interaction between cyclophilin A (CypA) and the HIV-1 CA protein. Here, we report crystal structures of CypA in complex with HIV-1 CA protein variants that bind preferentially with the substrate proline residue in either the cis or the trans conformation. Cis- and trans-Pro substrates are accommodated within the enzyme active site by rearrangement of their N-terminal residues and with minimal distortions in the path of the main chain. CypA Arg55 guanidinium group probably facilitates catalysis by anchoring the substrate proline oxygen and stabilizing sp3 hybridization of the proline nitrogen in the transition state.  相似文献   

6.
The fatty alk(a/e)ne biosynthesis pathway found in cyanobacteria gained tremendous attention in recent years as a promising alternative approach for biofuel production. Cyanobacterial aldehyde-deformylating oxygenase (cADO), which catalyzes the conversion of Cn fatty aldehyde to its corresponding Cn-1 alk(a/e)ne, is a key enzyme in that pathway. Due to its low activity, alk(a/e)ne production by cADO is an inefficient process. Previous biochemical and structural investigations of cADO have provided some information on its catalytic reaction. However, the details of its catalytic processes remain unclear. Here we report five crystal structures of cADO from the Synechococcus elongates strain PCC7942 in both its iron-free and iron-bound forms, representing different states during its catalytic process. Structural comparisons and functional enzyme assays indicate that Glu144, one of the iron-coordinating residues, plays a vital role in the catalytic reaction of cADO. Moreover, the helix where Glu144 resides exhibits two distinct conformations that correlates with the different binding states of the di-iron center in cADO structures. Therefore, our results provide a structural explanation for the highly labile feature of cADO di-iron center, which we proposed to be related to its low enzymatic activity. On the basis of our structural and biochemical data, a possible catalytic process of cADO was proposed, which could aid the design of cADO with improved activity.  相似文献   

7.
The cell wall binding domains (CBD) of bacteriophage endolysins target the enzymes to their substrate in the bacterial peptidoglycan with extraordinary specificity. Despite strong interest in these enzymes as novel antimicrobials, little is known regarding their interaction with the bacterial wall and their binding ligands. We investigated the interaction of Listeria phage endolysin PlyP35 with carbohydrate residues present in the teichoic acid polymers on the peptidoglycan. Biochemical and genetic analyses revealed that CBD of PlyP35 specifically recognizes the N-acetylglucosamine (GlcNAc) residue at position C4 of the polyribitol-phosphate subunits. Binding of CBDP35 could be prevented by removal of wall teichoic acid (WTA) polymers from cell walls, and inhibited by addition of purified WTAs or acetylated saccharides. We show that Listeria monocytogenes genes lmo2549 and lmo2550 are required for decoration of WTAs with GlcNAc. Inactivation of either gene resulted in a lack of GlcNAc glycosylation, and the mutants failed to bind CBDP35. We also report that the GlcNAc-deficient phenotype of L. monocytogenes strain WSLC 1442 is due to a small deletion in lmo2550, resulting in synthesis of a truncated gene product responsible for the glycosylation defect. Complementation with lmo2550 completely restored display of characteristic serovar 1/2 specific WTA and the wild-type phenotype.  相似文献   

8.
Soluble epoxide hydrolase (sEH) is a component of the arachidonic acid cascade and is a candidate target for therapies for hypertension or inflammation. Although many sEH inhibitors are available, their scaffolds are not structurally diverse, and knowledge of their specific interactions with sEH is limited. To obtain detailed structural information about protein–ligand interactions, we conducted fragment screening of sEH, analyzed the fragments using high-throughput X-ray crystallography, and determined 126 fragment-bound structures at high resolution. Aminothiazole and benzimidazole derivatives were identified as novel scaffolds that bind to the catalytic triad of sEH with good ligand efficiency. We further identified fragment hits that bound to subpockets of sEH called the short and long branches. The water molecule conserved in the structure plays an important role in binding to the long branch, whereas Asp496 and the main chain of Phe497 form hydrogen bonds with fragment hits in the short branch. Fragment hits and their crystal structures provide structural insights into ligand binding to sEH that will facilitate the discovery of novel and potent inhibitors of sEH.  相似文献   

9.
Transient Receptor Potential channels from the vanilloid subfamily (TRPV) are a group of cation channels modulated by a variety of endogenous stimuli as well as a range of natural and synthetic compounds. Their roles in human health make them of keen interest, particularly from a pharmacological perspective. However, despite this interest, the complexity of these channels has made it difficult to obtain high resolution structures until recently. With the cryo-EM resolution revolution, TRPV channel structural biology has blossomed to produce dozens of structures, covering every TRPV family member and a variety of approaches to examining channel modulation. Here, we review all currently available TRPV structures and the mechanistic insights into gating that they reveal.  相似文献   

10.
During a bacterial infection, each successive step is orchestrated by a dedicated set of virulence factors. In Gram-positive bacteria, the presentation or release of such factors is crucially dependent on the continual remodelling of the cell wall. We have investigated the autolysin or peptidoglycan hydrolase Auto (Lmo1076) from the human pathogen Listeria monocytogenes to structurally and biochemically underpin its role in host cell invasion. We demonstrate that Auto is an N -acetylglucosaminidase, that it is autoinhibited when newly secreted but activated by proteolytic cleavage, that it has an acidic pH optimum and that it preferentially cleaves acetylated over de-acetylated peptidoglycan. The crystal structure of Auto, the first for glycoside hydrolase family 73, and the first for a listerial autolysin, indicates that autoinhibition is due to an N-terminal α-helix unique to Auto that physically blocks the substrate-binding cleft. We identify Glu122 and Glu156 as the two catalytically essential carboxylate groups. The physical properties of Auto as well as its localization to lipoteichoic acid by its four C-terminal GW modules imply cell wall degradation by Auto to be highly co-ordinated. Its spatio-temporally controlled activation and localized activity in an acidified environment indicate that it facilitates remodelling of the cell wall and may be involved in co-ordinating the release of virulence factors at specific stages of an infection.  相似文献   

11.
12.
Sialidases are a superfamily of sialic-acid-releasing enzymes that are of significant interest due to their implication as virulence factors in the pathogenesis of a number of diseases. However, extensive studies of viral and microbial sialidases have failed to provide a comprehensive picture of their mechanistic properties, in part because the structures of competent enzyme-substrate complexes and reaction intermediates have never been described. Here we report these structures for the Trypanosoma cruzi trans-sialidase (TcTS), showing that catalysis by sialidases occurs via a similar mechanism to that of other retaining glycosidases, but with some intriguing differences that may have evolved in response to the substrate structure.  相似文献   

13.
Tandon A  Sinha S 《Bioinformation》2011,5(8):310-314
Matrix Metalloproteinase are family of enzymes responsible for degradation of extracellular matrix. MMP9 (gelatinase B) is one of the common matrix metalloproteinase that is associated with tissue destruction in a number of disease states such as rheumatoid arthiritis, fibrotic lung disease, dilated cardiomyopathy, as well as cancer invasion and metastasis. Recent study demonstrates that increased expression of MMP9 results in augmentation of myopathy with increased inflammation and fibernecrosis. Previous studies do not provide any conclusive information related to structural specificity of MMP9 inhibitors towards its active site, but with the availability of experimental structures it is now possible to study the structural specificity of MMP9 inhibitors. In light of availability of this information, we have applied docking and molecular dynamics approach to study the binding of inhibitors to the active site of MMP9. Three categories of inhibitor consisting of sulfonamide hydroxamate, thioester, and carboxylic moieties as zinc binding groups (ZBG) were chosen in the present study. Our docking results demonstrate that thioester based zinc binding group gives favourable docking scores as compared to other two groups. Molecular Dynamics simulations further reveal that tight binding conformation for thioester group has high specificity for MMP9 active site. Our study provides valuable insights on inhibitor specificity of MMP9 which provides valuable hints for future design of potent inhibitors and drugs.  相似文献   

14.
Tian B  Eriksson LA 《Proteins》2011,79(5):1564-1572
Listeria monocytogenes is one of the most virulent foodborne pathogens. L. monocytogenes Sortase A (SrtA) enzyme, which catalyzes the cell wall anchoring reaction of the leucine, proline, X, threonine, and glycine proteins (LPXTG, where X is any amino acid), is a target for the development of antilisteriosis drugs. In this study, the structure of the L. monocytogenes SrtA enzyme-substrate complex was obtained using homology modeling, molecular docking and molecular dynamics simulations. Explicit enzyme-substrate interactions in the inactive and active forms of the enzyme were compared, based on 30 ns simulations on each system. The active site arginine (Arg 197) was found to be able change its hydrogen donor interactions from the LP backbone carbonyl groups of the LPXTG substrate in the inactive form, to the TG backbone carbonyls in the active form, which could be of importance for holding the substrate in position for the catalytic process.  相似文献   

15.
2-Hydroxy-6-ketonona-2,4-diene-1,9-dioic acid 5,6-hydrolase (MhpC) is a 62 kDa homodimeric enzyme of the phenylpropionate degradation pathway of Escherichia coli. The 2.1 A resolution X-ray structure of the native enzyme determined from orthorhombic crystals confirms that it is a member of the alpha/beta hydrolase fold family, comprising eight beta-strands interconnected by loops and helices. The 2.8 A resolution structure of the enzyme co-crystallised with the non-hydrolysable substrate analogue 2,6-diketo-nona-1,9-dioic acid (DKNDA) confirms the location of the active site in a buried channel including Ser110, His263 and Asp235, postulated contributors to a serine protease-like catalytic triad in homologous enzymes. It appears that the ligand binds in two separate orientations. In the first, the C6 keto group of the inhibitor forms a hemi-ketal adduct with the Ser110 side-chain, the C9 carboxylate group interacts, via the intermediacy of a water molecule, with Arg188 at one end of the active site, while the C1 carboxylate group of the inhibitor comes close to His114 at the other end. In the second orientation, the C1 carboxylate group binds at the Arg188 end of the active site and the C9 carboxylate group at the His114 end. These arrangements implicated His114 or His263 as plausible contributors to catalysis of the initial enol/keto tautomerisation of the substrate but lack of conservation of His114 amongst related enzymes and mutagenesis results suggest that His263 is the residue involved. Variability in the quality of the electron density for the inhibitor amongst the eight molecules of the crystal asymmetric unit appears to correlate with alternative positions for the side-chain of His114. This might arise from half-site occupation of the dimeric enzyme and reflect the apparent dissociation of approximately 50% of the keto intermediate from the enzyme during the catalytic cycle.  相似文献   

16.
Selenophosphate synthetase (SPS) catalyzes the synthesis of selenophosphate, the selenium donor for the biosynthesis of selenocysteine and 2-selenouridine residues in seleno-tRNA. Selenocysteine, known as the 21st amino acid, is then incorporated into proteins during translation to form selenoproteins which serve a variety of cellular processes. SPS activity is dependent on both Mg(2+) and K(+) and uses ATP, selenide, and water to catalyze the formation of AMP, orthophosphate, and selenophosphate. In this reaction, the gamma phosphate of ATP is transferred to the selenide to form selenophosphate, while ADP is hydrolyzed to form orthophosphate and AMP. Most of what is known about the function of SPS has derived from studies investigating Escherichia coli SPS (EcSPS) as a model system. Here we report the crystal structure of the C17S mutant of SPS from E. coli (EcSPS(C17S)) in apo form (without ATP bound). EcSPS(C17S) crystallizes as a homodimer, which was further characterized by analytical ultracentrifugation experiments. The glycine-rich N-terminal region (residues 1 through 47) was found in the open conformation and was mostly ordered in both structures, with a magnesium cofactor bound at the active site of each monomer involving conserved aspartate residues. Mutating these conserved residues (D51, D68, D91, and D227) along with N87, also found at the active site, to alanine completely abolished AMP production in our activity assays, highlighting their essential role for catalysis in EcSPS. Based on the structural and biochemical analysis of EcSPS reported here and using information obtained from similar studies done with SPS orthologs from Aquifex aeolicus and humans, we propose a catalytic mechanism for EcSPS-mediated selenophosphate synthesis.  相似文献   

17.
The C-terminal cell wall binding domains (CBDs) of phage endolysins direct the enzymes to their binding ligands on the bacterial cell wall with high affinity and specificity. The Listeria monocytogenes Ply118, Ply511, and PlyP40 endolysins feature related CBDs which recognize the directly cross-linked peptidoglycan backbone structure of Listeria. However, decoration with fluorescently labeled CBDs primarily occurs at the poles and septal regions of the rod-shaped cells. To elucidate the potential role of secondary cell wall-associated carbohydrates such as the abundant wall teichoic acid (WTA) on this phenomenon, we investigated CBD binding using L. monocytogenes serovar 1/2 and 4 cells deficient in WTA. Mutants were obtained by deletion of two redundant tagO homologues, whose products catalyze synthesis of the WTA linkage unit. While inactivation of either tagO1 (EGDe lmo0959) or tagO2 (EGDe lmo2519) alone did not affect WTA content, removal of both alleles following conditional complementation yielded WTA-deficient Listeria cells. Substitution of tagO from an isopropyl-β-d-thiogalactopyranoside-inducible single-copy integration vector restored the original phenotype. Although WTA-deficient cells are viable, they featured severe growth inhibition and an unusual coccoid morphology. In contrast to CBDs from other Listeria phage endolysins which directly utilize WTA as binding ligand, the data presented here show that WTAs are not required for attachment of CBD118, CBD511, and CBDP40. Instead, lack of the cell wall polymers enables unrestricted spatial access of CBDs to the cell wall surface, indicating that the abundant WTA can negatively regulate sidewall localization of the cell wall binding domains.  相似文献   

18.
Structural insights into substrate binding by the molecular chaperone DnaK   总被引:8,自引:0,他引:8  
How substrate affinity is modulated by nucleotide binding remains a fundamental, unanswered question in the study of 70 kDa heat shock protein (Hsp70) molecular chaperones. We find here that the Escherichia coli Hsp70, DnaK, lacking the entire alpha-helical domain, DnaK(1-507), retains the ability to support lambda phage replication in vivo and to pass information from the nucleotide binding domain to the substrate binding domain, and vice versa, in vitro. We determined the NMR solution structure of the corresponding substrate binding domain, DnaK(393-507), without substrate, and assessed the impact of substrate binding. Without bound substrate, loop L3,4 and strand beta3 are in significantly different conformations than observed in previous structures of the bound DnaK substrate binding domain, leading to occlusion of the substrate binding site. Upon substrate binding, the beta-domain shifts towards the structure seen in earlier X-ray and NMR structures. Taken together, our results suggest that conformational changes in the beta-domain itself contribute to the mechanism by which nucleotide binding modulates substrate binding affinity.  相似文献   

19.
Endoglin, a type I membrane glycoprotein expressed as a disulfide-linked homodimer on human vascular endothelial cells, is a component of the transforming growth factor (TGF)-β receptor complex and is implicated in a dominant vascular dysplasia known as hereditary hemorrhagic telangiectasia as well as in preeclampsia. It interacts with the type I TGF-β signaling receptor activin receptor-like kinase (ALK)1 and modulates cellular responses to Bone Morphogenetic Protein (BMP)-9 and BMP-10. Structurally, besides carrying a zona pellucida (ZP) domain, endoglin contains at its N-terminal extracellular region a domain of unknown function and without homology to any other known protein, therefore called the orphan domain (OD). In this study, we have determined the recognition and binding ability of full length ALK1, endoglin and constructs encompassing the OD to BMP-9 using combined methods, consisting of surface plasmon resonance and cellular assays. ALK1 and endoglin ectodomains bind, independently of their glycosylation state and without cooperativity, to different sites of BMP-9. The OD comprising residues 22 to 337 was identified among the present constructs as the minimal active endoglin domain needed for partner recognition. These studies also pinpointed to Cys350 as being responsible for the dimerization of endoglin. In contrast to the complete endoglin ectodomain, the OD is a monomer and its small angle X-ray scattering characterization revealed a compact conformation in solution into which a de novo model was fitted.  相似文献   

20.
5-Methylthioribose 1-phosphate isomerase (M1Pi) is a crucial enzyme involved in the universally conserved methionine salvage pathway (MSP) where it is known to catalyze the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P) via a mechanism which remains unspecified till date. Furthermore, although M1Pi has a discrete function, it surprisingly shares high structural similarity with two functionally non-related proteins such as ribose-1,5-bisphosphate isomerase (R15Pi) and the regulatory subunits of eukaryotic translation initiation factor 2B (eIF2B). To identify the distinct structural features that lead to divergent functional obligations of M1Pi as well as to understand the mechanism of enzyme catalysis, the crystal structure of M1Pi from a hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined. A meticulous structural investigation of the dimeric M1Pi revealed the presence of an N-terminal extension and a hydrophobic patch absent in R15Pi and the regulatory α-subunit of eIF2B. Furthermore, unlike R15Pi in which a kink formation is observed in one of the helices, the domain movement of M1Pi is distinguished by a forward shift in a loop covering the active-site pocket. All these structural attributes contribute towards a hydrophobic microenvironment in the vicinity of the active site of the enzyme making it favorable for the reaction mechanism to commence. Thus, a hydrophobic active-site microenvironment in addition to the availability of optimal amino-acid residues surrounding the catalytic residues in M1Pi led us to propose its probable reaction mechanism via a cis-phosphoenolate intermediate formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号