首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global climate change may fundamentally alter population dynamics of many species for which baseline population parameter estimates are imprecise or lacking. Historically, the Pacific walrus is thought to have been limited by harvest, but it may become limited by global warming‐induced reductions in sea ice. Loss of sea ice, on which walruses rest between foraging bouts, may reduce access to food, thus lowering vital rates. Rigorous walrus survival rate estimates do not exist, and other population parameter estimates are out of date or have well‐documented bias and imprecision. To provide useful population parameter estimates we developed a Bayesian, hidden process demographic model of walrus population dynamics from 1974 through 2006 that combined annual age‐specific harvest estimates with five population size estimates, six standing age structure estimates, and two reproductive rate estimates. Median density independent natural survival was high for juveniles (0.97) and adults (0.99), and annual density dependent vital rates rose from 0.06 to 0.11 for reproduction, 0.31 to 0.59 for survival of neonatal calves, and 0.39 to 0.85 for survival of older calves, concomitant with a population decline. This integrated population model provides a baseline for estimating changing population dynamics resulting from changing harvests or sea ice.  相似文献   

2.
The difficulties in understanding the underlying reasons of a population decline lie in the typical short duration of field studies, the often too small size already reached by a declining population or the multitude of environmental factors that may influence population trend. In this difficult context, useful demographic tools such as integrated population models (IPM) may help disentangling the main reasons for a population decline. To understand why a hoopoe Upupa epops population has declined, we followed a three step model analysis. We built an IPM structured with respect to habitat quality (approximated by the expected availability of mole crickets, the main prey in our population) and estimated the contributions of habitat‐specific demographic rates to population variation and decline. We quantified how much each demographic rate has decreased and investigated whether habitat quality influenced this decline. We tested how much weather conditions and research activities contributed to the decrease in the different demographic rates. The decline of the hoopoe population was mainly explained by a decrease in first‐year apparent survival and a reduced number of fledglings produced, particularly in habitats of high quality. Since a majority of pairs bred in habitats of the highest quality, the decrease in the production of locally recruited yearlings in high‐quality habitat was the main driver of the population decline despite a homogeneous drop of recruitment across habitats. Overall, the explanatory variables we tested only accounted for 19% of the decrease in the population growth rate. Among these variables, the effects of spring temperature (49% of the explained variance) contributed more to population decline than spring precipitation (36%) and research activities (maternal capture delay, 15%). This study shows the power of IPMs for identifying the vital rates involved in population declines and thus paves the way for targeted conservation and management actions.  相似文献   

3.
The only large mainland colony of southern elephant seals (Mirounga leonina) is on Península Valdés, at 42°S, in Argentine Patagonia. Censuses of pups have been carried out regularly there since 1970, and the population grew five‐fold by 2010. Here we use Bayesian modeling tools to make rigorous estimates of the rate of population growth, r, and to estimate survival and recruitment parameters that could account for the growth, incorporating observation error across different census methods. In the 1970s, r= 8%/yr, but has slowed to <1%/yr over the past decade. Using explicit demographic models, we established that the high growth of the 1970s was consistent with adult and juvenile survival at the upper end of published values (0.87/yr adult female survival; 0.40 juvenile survivorship to age four); the decline in the rate of population growth from 1970 to 2010 can be described by density‐dependent reductions in adult and juvenile survival that fall well within published variation. Extrapolating empirical models of population growth rate backwards illustrates that the population could have been an established colony, with 100 pups born per year, between 1915 and 1945, consistent with qualitative observations prior to 1950. We conclude that the Valdés colony was founded by a few immigrants early in the 20th century and has been growing mostly by internal recruitment, with unknown density‐dependent processes causing a reduction in growth and stabilization at 15,000–16,000 pups born.  相似文献   

4.
Understanding the drivers underlying fluctuations in the size of animal populations is central to ecology, conservation biology, and wildlife management. Reliable estimates of survival probabilities are key to population viability assessments, and patterns of variation in survival can help inferring the causal factors behind detected changes in population size. We investigated whether variation in age‐ and sex‐specific survival probabilities could help explain the increasing trend in population size detected in a small, discrete population of bottlenose dolphins Tursiops truncatus off the east coast of Scotland. To estimate annual survival probabilities, we applied capture–recapture models to photoidentification data collected from 1989 to 2015. We used robust design models accounting for temporary emigration to estimate juvenile and adult survival, multistate models to estimate sex‐specific survival, and age models to estimate calf survival. We found strong support for an increase in juvenile/adult annual survival from 93.1% to 96.0% over the study period, most likely caused by a change in juvenile survival. Examination of sex‐specific variation showed weaker support for this trend being a result of increasing female survival, which was overall higher than for males and animals of unknown sex. Calf survival was lower in the first than second year; a bias in estimating third‐year survival will likely exist in similar studies. There was some support first‐born calf survival being lower than for calves born subsequently. Coastal marine mammal populations are subject to the impacts of environmental change, increasing anthropogenic disturbance and the effects of management measures. Survival estimates are essential to improve our understanding of population dynamics and help predict how future pressures may impact populations, but obtaining robust information on the life history of long‐lived species is challenging. Our study illustrates how knowledge of survival can be increased by applying a robust analytical framework to photoidentification data.  相似文献   

5.
It has been proposed that in slow‐growing vertebrate populations survival generally has a greater influence on population growth than reproduction. Despite many studies cautioning against such generalizations for conservation, wildlife management for slow‐growing populations still often focuses on perturbing survival without careful evaluation as to whether those changes are likely or feasible. Here, we evaluate the relative importance of reproduction and survival for the conservation of two bottlenose dolphin (Tursiops cf aduncus) populations: a large, apparently stable population and a smaller one that is forecast to decline. We also assessed the feasibility and effectiveness of wildlife management objectives aimed at boosting either reproduction or survival. Consistent with other analytically based elasticity studies, survival had the greatest effect on population trajectories when altering vital rates by equal proportions. However, the findings of our alternative analytical approaches are in stark contrast to commonly used proportional sensitivity analyses and suggest that reproduction is considerably more important. We show that

6.
For declining wild populations, a critical aspect of effective conservation is understanding when and where the causes of decline occur. The primary drivers of decline in migratory and seasonal populations can often be attributed to a specific period of the year. However, generic, broadly applicable indicators of these season‐specific drivers of population decline remain elusive. We used a multi‐generation experiment to investigate whether habitat loss in either the breeding or non‐breeding period generated distinct signatures of population decline. When breeding habitat was reduced, population size remained relatively stable for several generations, before declining precipitously. When non‐breeding habitat was reduced, between‐season variation in population counts increased relative to control populations, and non‐breeding population size declined steadily. Changes in seasonal vital rates and other indicators were predicted by the season in which habitat loss treatment occurred. Per capita reproductive output increased when non‐breeding habitat was reduced and decreased with breeding habitat reduction, whereas per capita non‐breeding survival showed the opposite trends. Our results reveal how simple signals inherent in counts and demographics of declining populations can indicate which period of the annual cycle is driving declines.  相似文献   

7.
The Pacific walrus population has been depleted and subsequently allowed to recover three times in the past 150 yr. As we see it, the population has been made to fluctuate like an r-selected species, rather than being maintained at a high, stable level, as befits a K-selected species. The latest depletion began in the 1930s but was not recognized until 25 yr later, by which time the population had been reduced by at least half. Without benefit of communication, the U.S.S.R. and the State of Alaska put similar protective measures into place by 1960, and in the next two decades the walrus population recovered again, at least doubling in size. By 1980, it already was showing density-dependent signs of having approached or reached the carrying capacity of its environment. As productivity and calf survival declined sharply in the late 1970s and early 1980s the catches more than doubled. We believe that the combined effects of natural curtailment and human intervention may be bringing the population down again rather rapidly. With the present, crude monitoring methods, delayed management responses, and poor international communications, however, the downward trend may not be acknowledged for at least another decade, by which time the unilateral Soviet and American corrective measures are likely to be too much, too late. Walrus management needs to be based less on response to immediate crisis and more on long term prediction than it has been in the past. Because the U.S.A. and U.S.S.R. are trying to manage the same walrus population, without sufficient communication or consensus and sometimes to opposite ends, an international joint management program needs to be implemented.  相似文献   

8.
We estimated the risk that the Steller sea lion will be extirpated in western Alaska using a population viability analysis (PVA) that combined simulations with statistically fitted models of historical population dynamics. Our analysis considered the roles that density‐dependent and density‐independent factors may have played in the past, and how they might influence future population dynamics. It also established functional relationships between population size, population growth rate and the risk of extinction under alternative hypotheses about population regulation and environmental variability. These functional relationships can be used to develop recovery criteria and guide research and management decisions. Life table parameters (e.g., birth and survival rates) operating during the population decline (1978–2002) were estimated by fitting simple age‐structured models to time‐series of pup and non‐pup counts from 33 rookeries (subpopulations). The PVA was carried out by projecting all 33 subpopulations into the future using these estimated site‐specific life tables (with associated uncertainties) and different assumptions about carrying capacities and the presence or absence of density‐dependent population regulation. Results suggest that the overall predicted risk of extirpation of Steller sea lions as a species in western Alaska was low in the next 100 yr under all scenarios explored. However, most subpopulations of Steller sea lions had high probabilities of going extinct within the next 100 yr if trends observed during the 1990s were to continue. Two clusters of contiguous subpopulations occurring in the Unimak Pass area in the western Gulf of Alaska/eastern Aleutian Islands and the Seguam–Adak region in the central Aleutian Islands had relatively lower risks of extinction. Risks of extinction for a number of subpopulations in the Gulf of Alaska were reduced if the increases observed since the late 1990s continue into the future. The risks of subpopulations going extinct were small when density‐dependent compensation in birth and survival rates was assumed, even when random stochasticity in these vital rates was introduced.  相似文献   

9.
Tropical late‐successional tree species are at high risk of local extinction due to habitat loss and fragmentation. Population‐growth rates in fragmented populations are predicted to decline as a result of reduced fecundity, survival and growth. We examined the demographic effects of habitat fragmentation by comparing the population dynamics of the late‐successional tree Poulsenia armata (Moraceae) in southern Mexico between a continuous forest and several forest fragments using integral projection models (IPMs) during 2010–2012. Forest fragmentation did not lead to differences in population density and even resulted in a higher population‐growth rate (λ) in fragments compared to continuous forests. Habitat fragmentation had drastic effects on the dynamics of P. armata, causing the population structure to shift toward smaller sizes. Fragmented populations experienced a significant decrease in juvenile survival and growth compared to unaltered populations. Adult survival and growth made the greatest relative contributions to λ in both habitat types during 2011–2012. However, the relative importance of juvenile survival and growth to λ was highest in the fragmented forest in 2010–2011. Our Life Table Response Experiment analysis revealed that positive contributions of adult fecundity explained most of the variation of λ between both habitats and annual periods. Finally, P. armata has a relatively slow speed of recovery after disturbances, compromising persistence of fragmented populations. Developing a mechanistic understanding of how forest fragmentation affects plant population dynamics, as done here, will prove essential for the preservation of natural areas.  相似文献   

10.
Two hypotheses have been proposed to link population regulation to density‐dependent changes in demographical parameters: the habitat heterogeneity hypothesis (HHH) states that, as population density rises, an increasing proportion of individuals are forced to occupy low‐quality territories, which provokes a decline in average per‐capita survival and/or productivity although some individuals show no decline in fecundity; and the individual adjustment hypothesis (IAH), which suggests that increased densities lead to reductions in survival and/or fecundity by enhancing agonistic interactions, which affect all individuals to a similar extent. However, density‐dependent effects can be affected by density‐independent factors (DIF), such as weather. We test the effects of density dependence on annual reproductive success in Griffon Vultures Gyps fulvus at four spatial scales, nest‐site, cliff, colony and metacolony, in northern Spain from 2008 to 2015. Our results showed most support for the HHH at all scales. At the colony and cliff scale, IAH and DIF had similar importance, whereas there was little evidence of IAH at the metacolony and the nest scale. The best protected eyries (caves, potholes and sheltered ledges) produced the most fledglings and were used preferentially, whereas low‐quality eyries (exposed ledges or open crevices) were used only when the number of breeders increased. The significant interaction between breeding failure and density found for the more exposed eyries suggests that at higher densities, breeding pairs are forced to use poorer nesting areas, and the negative effect of density at the cliff scale could be due to the combined effect of a higher proportion of pairs using low‐quality eyries and the negative effect of rainfall.  相似文献   

11.
While the population growth rate in long‐lived species is highly sensitive to adult survival, reproduction can also significantly drive population dynamics. Reproductive parameters can be challenging to estimate as breeders and nonbreeders may vary in resighting probability and reproductive status may be difficult to assess. We extended capture–recapture (CR) models previously fitted for data on other long‐lived marine mammals to estimate demographic parameters while accounting for detection heterogeneity between individuals and state uncertainty regarding reproductive status. We applied this model to data on 106 adult female bottlenose dolphins observed over 13 years. The detection probability differed depending on breeding status. Concerning state uncertainty, offspring were not always sighted with their mother, and older calves were easier to detect than young‐of‐the‐year (YOY), respectively, 0.79 (95% CI 0.59–0.90) and 0.58 (95% CI 0.46–0.68). This possibly led to inaccurate reproductive status assignment of females. Adult female survival probability was high (0.97 CI 95% 0.96–0.98) and did not differ according to breeding status. Young‐of‐the‐year and 1‐year‐old calves had a significantly higher survival rate than 2‐year‐old (respectively, 0.66 CI 95% 0.50–0.78 and 0.45 CI 95% 0.29–0.61). This reduced survival is probably related to weaning, a period during which young are exposed to more risks since they lose protection and feeding from the mother. The probability of having a new YOY was high for breeding females that had raised a calf to the age of 3 or lost a 2‐year‐old calf (0.71, CI 95% 0.45–0.88). Yet, this probability was much lower for nonbreeding females and breeding females that had lost a YOY or a 1‐year‐old calf (0.33, 95% CI 0.26–0.42). The multievent CR framework we used is highly flexible and could be easily modified for other study questions or taxa (marine or terrestrial) aimed at modeling reproductive parameters.  相似文献   

12.
Variability in population numbers is a central issue in evolutionary ecology and also in biodiversity conservation. However, for most seabirds this information is lacking and tropical populations are virtually unstudied. Long‐term studies are warranted because world's seabird populations exhibit an overall declining trend since 1950. Using data spanning 23 yr, we investigated how adult survival, local recruitment, and their relative contributions to population growth (λ) vary over time in the blue‐footed booby Sula nebouxii, a long‐lived locally foraging seabird that breeds in tropical waters. In addition, we investigated whether booby demographic rates exhibit the same declining trend observed in other seabirds, whether these rates are impacted by hurricanes, and whether these potential impacts differ between sexes. Our analysis of 4608 capture–recapture histories revealed that survival and recruitment were nearly equal between males and females, exhibited a declining trend over the last 23 yr, and in both sexes, these vital rates improved after a hurricane. The declining trend in recruitment was slightly more attenuated in males. These results add to the current evidence for an overall declining trend in world's seabird populations and extend its confirmation to the warm eastern tropical Pacific. Moreover, they provide the first evidence that hurricanes may favor natural populations. As a result of the declining trend and variation in survival and recruitment, λ exhibited a slight decline and substantial variation over the 23 yr. However, most λ values were equal to or higher than 1, and the long‐term average indicates population increase. The ability of blue‐footed boobies to maintain a positive population balance despite of negative trends in their vital rates might result from canalization of adult survival (the vital rate that contributes most to λ and shows lower variation compared to recruitment) against environmental variability.  相似文献   

13.
Populations are typically defined as spatially contiguous sets of individuals, but large populations of social species can be composed of discrete social communities that often overlap in space. Masai giraffes (Giraffa camelopardalis tippelskirchi) of Tanzania live in distinct social subpopulations that overlap spatially, enabling us to simultaneously explore environmental and social factors correlated with demographic variation in a metapopulation of >1,400 adult females and calves. We considered statistically distinct communities in the social network as subpopulations and tested for variation among the 10 subpopulations in adult female survival, calf survival, and reproductive rate (calf-to-adult female ratio). We then related variation in demographic rates among subpopulations to differences in vegetation, soil type, proximity to 2 types of human settlements, local giraffe population density, and social metrics of relationship strength and exclusivity among adult females. We did not find any among-subpopulation effects on adult female survival, suggesting adult female survival is buffered against environmental heterogeneity among subpopulations. Variation in calf demographic rates among subpopulations were correlated with vegetation, soils, anthropogenic factors, and giraffe population density but not with adult female relationship metrics, despite substantial spatial overlap. Subpopulations with more dense bushlands in their ranges had lower calf survival probabilities, and those closer to human settlements had higher reproductive rates, possibly because of spatial gradients in natural predation. Reproductive rates were higher in subpopulations with more volcanic soils, and calf survival probabilities were greater in subpopulations with higher local adult female densities, possibly related to higher-quality habitat associated with fertile soils or lower predation risk, or to greater competitive ability. The variation in fitness among subpopulations suggests that giraffes do not move unhindered among resource patches to equalize reproductive success, as expected according to an ideal free distribution. The differences in calf survival and reproductive rates could rather indicate intercommunity differences in competitive ability, perception, learning, or experience. Our approach of comparing demography among spatially overlapping yet distinct socially defined subpopulations provides a biologically meaningful way to quantify environmental and social factors influencing fine-scale demographic variation for social species. © 2021 The Wildlife Society.  相似文献   

14.
Natural populations are exposed to seasonal variation in environmental factors that simultaneously affect several demographic rates (survival, development and reproduction). The resulting covariation in these rates determines population dynamics, but accounting for its numerous biotic and abiotic drivers is a significant challenge. Here, we use a factor‐analytic approach to capture partially unobserved drivers of seasonal population dynamics. We use 40 years of individual‐based demography from yellow‐bellied marmots (Marmota flaviventer) to fit and project population models that account for seasonal demographic covariation using a latent variable. We show that this latent variable, by producing positive covariation among winter demographic rates, depicts a measure of environmental quality. Simultaneously, negative responses of winter survival and reproductive‐status change to declining environmental quality result in a higher risk of population quasi‐extinction, regardless of summer demography where recruitment takes place. We demonstrate how complex environmental processes can be summarized to understand population persistence in seasonal environments.  相似文献   

15.
Intensification of rangeland management has coincided with population declines among obligate grassland species in the largest remaining tallgrass prairie in North America, although causes of declines remain unknown. We modeled population dynamics and conducted sensitivity analyses from demographic data collected for an obligate grassland bird that is an indicator species for tallgrass prairie, the greater prairie-chicken (Tympanuchus cupido), during a 4-year study in east-central Kansas, USA. We examined components of reproductive effort and success, juvenile survival, and annual adult female survival for 3 populations of prairie-chickens across an ecological gradient of human landscape alteration and land use. We observed regional differences in reproductive performance, survivorship, and population dynamics. All 3 populations of prairie-chickens were projected to decline steeply given observed vital rates, but rates of decline differed across a gradient of landscape alteration, with the greatest declines in fragmented landscapes. Elasticity values, variance-scaled sensitivities, and contribution values from a random-effects life-table response experiment all showed that the finite rate of population change was more sensitive to changes in adult survival than other demographic parameters in our declining populations. The rate of population change was also sensitive to nest survival at the most fragmented and least intensively grazed study site; suggesting that patterns of landscape fragmentation and land use may be affecting the relative influences of underlying vital rates on rates of population growth. Our model results indicate that 1) populations of prairie-chickens in eastern Kansas are unlikely to be viable without gains from immigration, 2) rates of population decline vary among areas under different land management practices, 3) human land-use patterns may affect the relative influences of vital rates on population trajectories, and 4) anthropogenic effects on population demography may influence the regional life-history strategies of a short-lived game bird. © 2012 The Wildlife Society.  相似文献   

16.
We applied temporal symmetry capture–recapture (TSCR) models to assess the strength of evidence for factors potentially responsible for population decline in bottlenose dolphins (Tursiops truncatus) in Doubtful Sound, New Zealand from 1995 to 2008. Model selection was conducted to estimate recruitment and population growth rates. There were similar levels of support for three different models, each reflecting distinct trends in recruitment. Modeling yielded low overall estimates of recruitment (0.0249, 95% CI: 0.0174–0.0324) and population growth rate (0.9642, 95% CI: 0.9546–0.9737). The TSCR rate of population decline was consistent with an estimate derived from trends in abundance (lambda = 0.9632, 95% CI: 0.9599–0.9665). The TSCR model selection confirmed the influence of a decline in the survival of calves (<1 yr old) since 2002 for population trends. However, TSCR population growth rates did not exceed 1 in any year between 1995 and 2008, indicating the population was declining prior to 2002. A separate reduction in juvenile survival (1–3 yr old) prior to 2002 was identified as a likely contributing factor in the population decline. Thus, TSCR modeling indicated the potential cause of the population decline in Doubtful Sound: cumulative impacts on individuals <3 yr old resulting in a reduced recruitment.  相似文献   

17.
ABSTRACT The distribution and abundance of swift foxes (Vulpes velox) has declined from historic levels. Causes for the decline include habitat loss and fragmentation, incidental poisoning, changing land use practices, trapping, and predation by other carnivores. Coyotes (Canis latrans) overlap the geographical distribution of swift foxes, compete for similar resources, and are a significant source of mortality amongst many swift fox populations. Current swift fox conservation and management plans to bolster declining or recovering fox populations may include coyote population reduction to decrease predation. However, the role of coyote predation in swift fox population dynamics is not well-understood. To better understand the interactions of swift foxes and coyotes, we compared swift fox population demographics (survival rates, dispersal rates, reproduction, density) between areas with and without coyote population reduction. On the Piñon Canyon Maneuver Site, Colorado, USA, we monitored 141 swift foxes for 65,226 radio-days from 15 December 1998 to 14 December 2000 with 18,035 total telemetry locations collected. Juvenile swift fox survival rate was increased and survival was temporarily prolonged in the coyote removal area. Adult fox survival patterns were also altered by coyote removal, but only following late-summer coyote removals and, again, only temporarily. Coyote predation remained the main cause of juvenile and adult fox mortality in both areas. The increase in juvenile fox survival in the coyote removal area resulted in a compensatory increase in the juvenile dispersal rate and an earlier pulse in dispersal movements. Adult fox dispersal rate was more consistent throughout the year in the coyote removal area. Coyote removal did not influence the reproductive parameters of the swift foxes. Even though juvenile survival increased, swift fox density remained similar between the areas due to the compensatory dispersal rate among juvenile foxes. We concluded that the swift fox population in the area was saturated. Although coyote predation appeared additive in the juvenile cohort, it was compensatory with dispersal.  相似文献   

18.
Agricultural intensification over the past decades has led to a generalized decline in farmland biodiversity. Farmland birds are particularly exposed to rapid changes in habitat and reduced food resources or availability. Understanding how farmland specialists can be preserved and their populations enhanced are major challenges for this century. Based on a long‐term (19‐year) study of a Eurasian Stone‐curlew Burhinus oedicnemus population, we estimated the demographic parameters, including clutch size, egg volume, hatching success, survival rate and apparent population size. Demographic rates found for this French population were, on average, comparable to those found elsewhere in Europe. However, all demographic parameters showed negative trends, including a dramatic decline in the local population (26% decline over 14 years) and a 10% decline in adult survival rate over 11 years. Such a long‐term decline, despite on‐going conservation efforts, calls into question the overall sustainability of arable Stone‐curlew populations. We infer some of the possible causes of this decline, in particular food shortage, and discuss how this pattern could be reversed through conservation measures applicable at very large spatial scales.  相似文献   

19.
Recent pup population estimates of sympatric Subantarctic (Arctocephalus tropicalis) and Antarctic fur seals (A. gazella) at Marion Island are presented. Published pup population estimates of A. tropicalis (1995 and 2004) with an unpublished total island count in 2013, and annual counts on subsets of rookeries (2007–2015) were analyzed using a hierarchical Bayesian model. The pup population declined by 46% (95% credible interval CI: 43%–48%) between 2004 (mean = 15,260, CI: 14,447–16,169 pups) and 2013 (mean = 8,312, CI: 7,983–8,697), mirrored by a 58%–60% decline at rookeries counted annually (2007–2015). Population decline was highest at high‐density west and north coast rookeries, despite negligible change in female attendance patterns, pup mortality or median pupping date over the previous 25 yr. A better understanding of foraging behavior and its effects on reproductive success and survival in this A. tropicalis population is needed before we can attribute population decline to any external factors. In contrast, total island counts of A. gazella pups in 2007, 2010, and 2013, suggest that this population is still increasing although the annual intrinsic rate of population growth decreased from 17.0% (1995–2004, 744 pups) to 4.0% (2010–2013, 1,553 pups). The slowed growth of A. gazella is likely the result of saturation at the main rookery.  相似文献   

20.
The House Sparrow (Passer domesticus), formerly a common bird species, has shown a rapid decline in Western Europe over recent decades. In The Netherlands, its decline is apparent from 1990 onwards. Many causes for this decline have been suggested that all decrease the vital rates, i.e. survival and reproduction, but their actual impact remains unknown. Although the House Sparrow has been dominant in The Netherlands, data on life history characteristics for this bird species are scarce: data on reproduction are non-existent, and here we first present survival estimates based on live encounters and dead recoveries of marked individuals over the period 1976–2003, 14 years before and 14 years during the decline, reported to the Dutch Ringing Centre. We show that there is an indication that both juvenile and adult survival are lower during the period of decline. Secondly, to be able to analyse the relative impact of changes in the vital rates, we formulated a general matrix model based on a range of survival values between zero and one with a step size of 0.01 (both juvenile and adult yearly survival) and a range of realistic reproduction values (one, three or five fledglings per pair per year). With the matrix model, we calculated the finite rate of population change (λ) and applied elasticity analysis. To diagnose the cause of the decline in the Dutch House Sparrow, we parameterised the model with estimates of survival values before and during the decline and present the resulting λ. With the survival estimates from the declining period, λ < 1 only if reproduction is relatively low. We discuss this result within the light of available literature data on survival in the House Sparrow. Finally, we evaluate which of the suggested causes of population decline should be reversed to mitigate the decline and how this can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号