首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In the present study, Xyrichtys novacula (Labridae) were sampled at five locations around the islands of Ibiza and Formentera (western Mediterranean Sea). Isotopic signatures of δ13C, δ15N and the C:N ratio were analysed in relation to locality, sex and size differences. δ13C and δ15N partitioning was also studied in the reproductive spawning period. There were significant differences in the δ13C signature between localities for both sexes, but not for δ15N. Sex differences were also found with a mean ±s.e . value of ?17·38 ± 0·06‰δ13C and 8·36 ± 0·05‰δ15N for females and ?17·17 ± 0·07‰δ13C and 8·80 ± 0·06‰δ15N for males. Increasing total length in both sexes was positively correlated with δ15N enrichment and a significant positive linear regression was established for both variables. During the reproductive spawning period, there were changes in δ13C fractioning with enrichment in postspawning females and males (with respect to prespawning and spawning periods) and δ15N impoverishment in postspawning females (with respect to prespawning and spawning periods). Xyrichtys novacula uses local food sources, as confirmed by δ13C and δ15N, and females and males use different food sources, thus avoiding intraspecific competition. This was confirmed by δ15N enrichment as size increased. Spawning leads to special requirements for gonad maturation, which is reflected in the isotopic signatures for both sexes.  相似文献   

2.
The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long‐term human impacts. We used stable isotope (δ13C, δ15N) analysis of feathers from glaucous‐winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long‐term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ13C and δ15N declined since 1860 in both subadult and adult gulls (δ13C, ~ 2–6‰; δ15N, ~4–5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ13C and δ15N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage‐based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long‐term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional population declines in this species and other piscivores.  相似文献   

3.
Teeth of odontocetes accumulate annual dentinal growth layer groups (GLGs) that record isotope ratios, which reflect the time of their synthesis. Collectively, they provide lifetime records of individual feeding patterns from which life history traits can be inferred. We subsampled the prenatal dentin and postnatal GLGs in Risso's dolphins (Grampus griseus) (n = 65) that stranded or were collected as bycatch in Taiwan (1994–2014) and analyzed them for δ15N and δ13C. Age‐specific δ15N and δ13C values were corrected for effects of calendar year, stranding site, C/N, and sex. δ15N values were higher in prenatal layers (14.94‰ ± 0.74‰) than in adult female GLGs (12.58‰ ± 0.20‰), suggesting fetal enrichment during gestation. Decreasing δ15N values in early GLGs suggested changes in dietary protein sources during transition to complete weaning. Weaning age was earlier in males (1.09 yr) than in females (1.81 yr). Significant differences in δ15N values between weaned males and females suggest potential sexual segregation in feeding habits. δ13C values increased from the prenatal to the 4th GLG by ~1.0‰, indicative of a diet shift from 13C‐depleted milk to prey items. Our results provide novel insights into the sex‐specific ontogenetic changes in feeding patterns and some life history traits of Risso's dolphins.  相似文献   

4.
Stable isotope natural abundance measurements integrate across several biogeochemical processes in ecosystem N and C dynamics. Here, we report trends in natural isotope abundance (δ13C and δ15N in plant and soil) along a climosequence of 33 Nothofagus forest stands located within Patagonia, Southern Argentina. We measured 28 different abiotic variables (both climatic variables and soil properties) to characterize environmental conditions at each of the 33 sites. Foliar δ13C values ranged from ?35.4‰ to ?27.7‰, and correlated positively with foliar δ15N values, ranging from ?3.7‰ to 5.2‰. Soil δ13C and δ15N values reflected the isotopic trends of the foliar tissues and ranged from ?29.8‰ to ?25.3‰, and ?4.8‰ to 6.4‰, respectively, with no significant differences between Nothofagus species (Nothofagus pumilio, Nothofagus antarctica, Nothofagus betuloides). Principal component analysis and multiple regressions suggested that mainly water availability variables (mean annual precipitation), but not soil properties, explained between 42% and 79% of the variations in foliar and soil δ13C and δ15N natural abundance, which declined with increased moisture supply. We conclude that a decline in water use efficiency at wetter sites promotes both the depletion of heavy C and N isotopes in soil and plant biomass. Soil δ13C values were higher than those of the plant tissues and this difference increased as annual precipitation increased. No such differences were apparent when δ15N values in soil and plant were compared, which indicates that climatic differences contributed more to the overall C balance than to the overall N balance in these forest ecosystems.  相似文献   

5.
Stable isotope analysis (SIA) in combination with growth analysis using scales collected from adult chum salmon Oncorhynchus keta migrating back to Hokkaido, Japan, was performed to describe the variation of isotopic composition of carbon (δ13C) and nitrogen (δ15N) in scales and to examine relationships with growth traits [age, fork length (FL), and relative growth ratio in the last growth period [(RGRlast)]. Scale stable isotope (SI) values in 3‐ to 6‐year‐old fish were highly variable, ranging from ?17.6‰ to ?14.3‰ for δ13C and 9.5‰ to 13.4‰ for δ15N. The δ15N was positively correlated with FL, and this tendency may indicate changes in trophic level with growth. Significant effect was not detected between δ15N and RGRlast, it can be inferred that factors potentially yielding high δ15N may not necessarily result in higher growth rates. No trend found between FL and δ13C may imply that there is no clear segregation in feeding locations between the 3‐ to 6‐year groups. This study provided basic information for scale SI values of chum salmon adults and indicated that SIA using scales could be a new approach to elucidating the trophic ecology of chum salmon.  相似文献   

6.
Spatial variation in marine oxygen isotope ratios (δ18O) resulting from differential evaporation rates and precipitation inputs is potentially useful for characterizing marine mammal distributions and tracking movements across δ18O gradients. Dentine hydroxyapatite contains carbonate and phosphate that precipitate in oxygen isotopic equilibrium with body water, which in odontocetes closely tracks the isotopic composition of ambient water. To test whether dentine oxygen isotope composition reliably records that of ambient water and can therefore serve as a proxy for odontocete distribution and movement patterns, we measured δ18O values of dentine structural carbonate (δ18OSC) and phosphate (δ18OP) of seven odontocete species (n = 55 individuals) from regional marine water bodies spanning a surface water δ18O range of several per mil. Mean dentine δ18OSC (range +21.2 to +25.5‰ VSMOW) and δ18OP (+16.7 to +20.3‰) values were strongly correlated with marine surface water δ18O values, with lower dentine δ18OSC and δ18OP values in high‐latitude regions (Arctic and Eastern North Pacific) and higher values in the Gulf of California, Gulf of Mexico, and Mediterranean Sea. Correlations between dentine δ18OSC and δ18OP values with marine surface water δ18O values indicate that sequential δ18O measurements along dentine, which grows incrementally and archives intra‐ and interannual isotopic composition over the lifetime of the animal, would be useful for characterizing residency within and movements among water bodies with strong δ18O gradients, particularly between polar and lower latitudes, or between oceans and marginal basins.  相似文献   

7.
Several different factors in the collection and preservation of whale skin and blubber samples were examined to determine their effect on the results obtained by stable nitrogen and carbon isotope (δ15N and δ13C) analysis. Samples of wet killer whale skin retained their original stable isotope values for up to 14 d at 4°C or lower. However, decomposition significantly changed the δ15N value within 3 d at 20°C. Storage at ?20°C was as effective as ?80°C for the preservation of skin and blubber samples for stable isotope analysis for at least a year. By contrast, once a skin sample had been freeze‐dried and lipid extracted, the stable isotope values did not change significantly when it was stored dry at room temperature for at least 12 mo. Preservation of whale skin samples for a month in DMSO‐salt solution, frozen or at room temperature, did not significantly change the δ15N and δ13C values of lipid extracted tissues, although the slight changes seen could influence results of a study if only small changes are expected.  相似文献   

8.
The utility of δ15N measurements in Padina australis Hauck as a probe for its external nitrogen (N) sources was tested by monitoring the bulk values of chemical components [δ15N, δ13C, and N and carbon (C) contents] and their internal distributions during a 12 d incubation in a controlled environment. Under the saturated conditions of isotopically heavier nitrate than that of original algal tissue, the bulk δ15N in P. australis was enriched, but less than what was predicted from a simple mixing model, signaling possible isotopic discrimination during N assimilation and subsequent N efflux from the cells. The enhanced N content (%), which occurred simultaneously with this δ15N shift, was a useful signal indicating this phenomenon. Bulk δ15N was enriched, especially around the meristem, in tissues growing under conditions of higher irradiance and temperature, probably due in part to dissolved organic nitrogen (DON) excretion. The δ13C enhancement in bulk algal tissues, also associated with high photosynthetic activity, may be an additional signal indicating this unbalanced internal δ15N distribution. However, in summer and winter environmental conditions with periodic nitrate supplies simulating typical fringing reef waters, the difference in measured algal bulk δ15N from theoretical predictions was within ±1.0‰. This difference is very small compared with the variation in δ15N in possible N sources in coastal areas. In the field, therefore, δ15N in Padina can be used effectively to trace N sources in both space and time after determining algal N content and δ13C to determine whether large alterations occur in algal δ15N.  相似文献   

9.
Nitrogen isotope composition (δ15N) in plant organic matter is currently used as a natural tracer of nitrogen acquisition efficiency. However, the δ15N value of whole leaf material does not properly reflect the way in which N is assimilated because isotope fractionations along metabolic reactions may cause substantial differences among leaf compounds. In other words, any change in metabolic composition or allocation pattern may cause undesirable variability in leaf δ15N. Here, we investigated the δ15N in different leaf fractions and individual metabolites from rapeseed (Brassica napus) leaves. We show that there were substantial differences in δ15N between nitrogenous compounds (up to 30‰) and the content in (15N enriched) nitrate had a clear influence on leaf δ15N. Using a simple steady‐state model of day metabolism, we suggest that the δ15N value in major amino acids was mostly explained by isotope fractionation associated with isotope effects on enzyme‐catalysed reactions in primary nitrogen metabolism. δ15N values were further influenced by light versus dark conditions and the probable occurrence of alternative biosynthetic pathways. We conclude that both biochemical pathways (that fractionate between isotopes) and nitrogen sources (used for amino acid production) should be considered when interpreting the δ15N value of leaf nitrogenous compounds.  相似文献   

10.
We analyzed the δ13C and δ15N values in the vibrissae of captive adult breeding South American sea lions (Otaria byronia) fed at a constant diet and then used this information to analyze the change in stable isotope values along the vibrissae from wild individuals. The overall diet‐to‐vibrissa discrimination factor of the captive animals was 3.0‰ ± 0.1‰ for δ13C and 3.6‰ ± 0.1‰ for δ15N, but the stable isotope ratios fluctuated periodically despite constant diet. The δ13C and δ15N values of the captive male declined at the end of the breeding season, whereas the δ13C values of the female increased during the central part of pregnancy and the δ15N values peaked during lactation. The δ13C and δ15N values of adult wild specimens also fluctuated periodically and vibrissae growth rate (0.15 mm/d in both sexes) was slightly lower than in captivity (0.17 mm/d), assuming an annual periodicity for oscillations. Similarities in the amplitude of the cycles of captive and wild males suggested that fasting was probably the main source of periodic variability in the δ15N of wild males, whereas pregnancy and lactation were probably the main source of periodic variability for the δ13C of wild females.  相似文献   

11.
Changes in the world's oceans have altered nutrient flow, and affected the viability of predator populations when prey species become unavailable. These changes are integrated into the tissues of apex predators over space and time and can be quantified using stable isotopes in the inert feathers of historical and contemporary avian specimens. We measured δ13C and δ15N values in Flesh‐footed Shearwaters (Puffinus carneipes) from Western and South Australia from 1936–2011. The Flesh‐footed Shearwaters more than doubled their trophic niche (from 3.91 ± 1.37 ‰2 to 10.00 ± 1.79 ‰2), and dropped an entire trophic level in 75 years (predicted δ15N decreased from +16.9 ‰ to + 13.5 ‰, and δ13C from ?16.9 ‰ to ?17.9 ‰) – the largest change in δ15N yet reported in any marine bird, suggesting a relatively rapid shift in the composition of the Indian Ocean food web, or changes in baseline δ13C and δ15N values. A stronger El Niño‐Southern Oscillation results in a weaker Leeuwin Current in Western Australia, and decreased Flesh‐footed Shearwater δ13C and δ15N. Current climate forecasts predict this trend to continue, leading to increased oceanic ‘tropicalization' and potentially competition between Flesh‐footed Shearwaters and more tropical sympatric species with expanding ranges. Flesh‐footed Shearwater populations are declining, and current conservation measures aimed primarily at bycatch mitigation are not restoring populations. Widespread shifts in foraging, as shown here, may explain some of the reported decline. An improved understanding and ability to mitigate the impacts of global climactic changes is therefore critical to the long‐term sustainability of this declining species.  相似文献   

12.
This study compared the performance of the stable isotope composition of carbon (δ13C), oxygen (δ18O) and nitrogen (δ15N) by tracking plant response and genotypic variability of durum wheat to different salinity conditions. To that end, δ13C, δ18O and δ15N were analysed in dry matter (dm) and the water‐soluble fraction (wsf) of leaves from plants exposed to salinity, either soon after plant emergence or at anthesis. The δ13C and δ18O of the wsf recorded the recent growing conditions, including changes in evaporative conditions. Regardless of the plant part (dm or wsf), δ13C and δ18O increased and δ15N decreased in response to stress. When the stress conditions were established just after emergence, δ15N and δ13C correlated positively with genotypic differences in biomass, whereas δ18O correlated negatively in the most severe treatment. When the stress conditions were imposed at anthesis, relationships between the three isotope signatures and biomass were only significant and positive within the most severe treatments. The results show that nitrogen metabolism, together with stomatal limitation, is involved in the genotypic response to salinity, with the relative importance of each factor depending on the severity and duration of the stress as well as the phenological stage that the stress occurs.  相似文献   

13.
Stable isotopes in bones are a powerful tool for diet, provenance, climate, and physiological reconstructions, but necessarily require well‐preserved specimens unaltered by postmortem diagenesis or conservation practices. This study examines the effects of Paraloid B‐72 and Butvar B‐98, two common consolidants used in field and museum conservation, on δ13C, δ15N, and δ18O values from bone collagen and hydroxyapatite. The effects of solvent removal (100% acetone, 100% ethanol, 9:1 acetone:xylenes, 9:1 ethanol:xylenes) and drying methods (ambient air, vacuum, oven drying at 80°C) were also examined to determine if bones treated with these consolidants can successfully be cleaned and used for stable isotope analyses. Results show that introduction of Paraloid B‐72 or Butvar B‐98 in 100% acetone or 100% ethanol, respectively, with subsequent removal by the same solvents and drying at 80°C facilitates the most successful removal of consolidants and solvents. The δ13C values in collagen, δ15N in collagen, δ18O in hydroxyapatite phosphate, and δ13C in hydroxyapatite structural carbonate were unaltered by treatments with Paraloid or Butvar and subsequent solvent removal. The δ18O in hydroxyapatite structural carbonate showed nonsystematic variability when bones were treated with Paraloid and Butvar, which is hypothesized to be a result of hydroxyl exchange when bones are exposed to consolidants in solution. It is therefore recommended that δ18O in hydroxyapatite structural carbonate should not be used in stable isotope studies if bones have been treated with Paraloid or Butvar. Am J Phys Anthropol 157:330–338, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Ethanol storage and lipid and urea extraction had no effect on bluespotted maskray Neotrygon kuhlii muscle δ13C values whereas urea‐removal and ethanol storage increased δ15N values. Results presented here show a significant δ15N increase post‐urea removal and provide additional support for this approach in future elasmobranch stable‐isotope analysis (SIA) studies. Further experimental work on other elasmobranch species is needed to assess extraction and preservation effects on stable‐isotope (SI) values.  相似文献   

15.
1. Methanogenic carbon can be incorporated by methane‐oxidising bacteria, leading to a 13C‐depleted stable carbon isotopic composition (δ13C) of chironomids that feed on these microorganisms. This has been shown for the chironomid tribe Chironomini, but very little information is available about the δ13C of other abundant chironomid groups and the relationship between chironomid δ13C and methane production in lakes. 2. Methane flux was measured at the water surface of seven lakes in Sweden. Furthermore, fluxes from the sediments to the water column were measured in transects in two of the lakes. Methane fluxes were then compared with δ13C of chitinous chironomid remains isolated from the lake surface sediments. Several different chironomid groups were examined (Chironomini, Orthocladiinae, Tanypodinae and Tanytarsini). 3. Remains of Orthocladiinae in the seven study lakes had the highest δ13C values (?31.3 to ?27.0‰), most likely reflecting δ13C of algae and other plant‐derived organic matter. Remains of Chironomini and Tanypodinae had lower δ13C values (?33.2 to ?27.6‰ and ?33.6 to ?28.0‰, respectively). A significant negative correlation was observed between methane fluxes at the lake surface and δ13C of Chironomini (r = ?0.90, P = 0.006). Methane release from the sediments was also negatively correlated with δ13C of Chironomini (r = ?0.67, P = 0.025) in the transect samples obtained from two of the lakes. The remains of other chironomid taxa were only weakly or not correlated with methane fluxes measured in our study lakes (P > 0.05). 4. Selective incorporation of methane‐derived carbon can explain the observed correlations between methane fluxes and δ13C values of Chironomini. Remains of this group might therefore have the potential to provide information about past changes in methane availability in lakes using sediment records. However, differences in productivity, algal δ13C composition and the importance of allochthonous organic matter input between the studied lakes may also have influenced Chironomini δ13C. More detailed studies with a higher number of analysed samples and detailed measurement of δ13C of different ecosystem components (e.g. methane, dissolved inorganic carbon) will be necessary to further resolve the relative contribution of different carbon sources to δ13C of chironomid remains.  相似文献   

16.
Samples of recently produced shoot material collected in winter/spring from common plant species of mulga vegetation in eastern and Western Australia were assayed for 13C and 15N natural abundance. 13C analyses showed only three of the 88 test species to exhibit C4 metabolism and only one of seven succulent species to be in CAM mode. Non-succulent winter ephemeral C3 species showed significantly lower mean δ13C values (– 28·0‰) than corresponding C3-type herbaceous perennials, woody shrubs or trees (– 26·9, – 25·7 and – 26·2‰, respectively), suggesting lower water stress and poorer water use efficiency in carbon acquisition by the former than latter groups of taxa. Corresponding values for δ15N of the above growth and life forms lay within the range 7·5–15·5‰. δ15N of soil NH4+ (mean 19·6‰) at a soft mulga site in Western Australia was considerably higher than that of NO3 (4·3‰). Shoot dry matter of Acacia spp. exhibited mean δ15N values (9·10 ± 0·6‰) identical to those of 37 companion non-N2-fixing woody shrubs and trees (9·06 ± 0·5‰). These data, with no evidence of nodulation, suggested little or no input of fixed N2 by the legumes in question. However, two acacias and two papilionoid legumes from a dune of wind-blown, heavily leached sand bordering a lake in mulga in Western Australia recorded δ15N values in the range 2·0–3·0‰ versus 6·4–10·7‰ for associated non-N2-fixing taxa. These differences in δ15N, and prolific nodulation of the legumes, indicated symbiotic inputs of fixed N in this unusual situation. δ15N signals of lichens, termites, ants and grasshoppers from mulga of Western Australia provided evidence of N2 fixation in certain termite colonies and by a cyanobacteria-containing species of lichen. Data are discussed in relation to earlier evidence of nitrophily and water availability constraints on nitrate utilization by mulga vegetation.  相似文献   

17.
Stable isotope analysis (SIA) has rapidly become a useful tool to study the ecology of wild animal populations, especially for elusive, wide‐ranging predators like marine mammals. The development of projectile biopsy techniques resulted in the collection of thousands of cetacean tissue samples that were archived in a dimethyl sulfoxide (DMSO) solution for long‐term, multidecadal preservation. Here we examine the influence of DMSO preservation on carbon (δ13C) and nitrogen (δ15N) values by comparing a set of paired delphinid skin samples stored frozen without preservative and in DMSO for up to 22 yr. Treatment of paired frozen and DMSO‐preserved skin in a 2:1 chloroform:methanol solution yielded similar δ13C and δ15N values, revealing that DMSO and lipid contamination have similar isotopic effects on skin, and that these effects can be removed using routine lipid‐extraction methods. Further, amino acid concentrations in DMSO‐preserved and frozen skin tissue were similar, providing independent evidence of minimal protein alteration due to preservation. Access to a rich archive of skin samples preserved in DMSO will expand our ability to examine temporal and spatial variability in the isotope values of cetaceans, which will aid our understanding of how their ecology has been influenced by historical changes in environmental conditions.  相似文献   

18.
The stable isotopes of nitrogen (δ15N) and carbon (δ13C) provide powerful tools for quantifying trophic relationships and carbon flow to consumers in food webs; however, the isotopic signatures of organisms vary within a lake. Assessment of carbon and nitrogen isotopic signatures in a suite of plants, invertebrates, and fishes in Lake Kyoga, indicated significant variation between two sites for δ13C (paired t = 6.305; df = 14, P < 0.001 and δ15N paired t = 1.292; df = 14; P < 0.05). The fish fauna in Bukungu was generally more 13C enriched (mean δ13C = –16.37 ± 1.64‰) than in Iyingo (mean δ13C = –20.80 ± 2.41‰) but more δ15N depleted (mean δ15N = 5.57 ± 0.71‰) than in Iyingo (mean δ15N = 6.92 ± 0.83‰). The simultaneous shifts in phytoplankton and consumer signatures confirmed phytoplankton as the major source of carbon for the food chain leading to fish. Limited sampling coverage within lakes may affect lake wide stable isotope signatures, and the same error is transferred into trophic position estimation. Consideration of potential intra‐lake spatial variability in isotope ratios and size is essential in evaluating the spatial and trophic structure of fish assemblages.  相似文献   

19.
We compared δ13C and δ15N values of muscle with fin from juvenile Chinese sturgeon (Acipenser sinensis), to evaluate the feasibility of using nonlethal (fin) as an alternative to lethal (muscle) sampling. Size and lipid effect on the relationship between fin and muscle were also investigated. Dorsal muscle (DM) and fin clip (FC) were collected from A. sinensis with different body length (120–373 mm) in the Yangtze Estuary for isotope analysis. The result showed that (1) muscle isotope values could estimated by the values of fin, from either use the regression model (δ13CDM = 0.939 × FC ? 2.577; δ15NDM = 0.737 × FC + 4.638) or constants factors (δ13CDM = δ13CFC ? 1.27; δ15NDM = δ15NFC + 0.59); (2) no size‐based relationships with δ13C and δ15N from either fin or muscle; (3) lipid extraction significantly improving the fin and muscle regression model fit for both δ13C and δ15N values. Therefore, this study support the use of nonlethal fin tissues for isotope analysis of juvenile A. sinensis, and will allow trophic studies to avoid the effect of lipid accumulation from muscle.  相似文献   

20.
Determining how marine predators partition resources is hindered by the difficulty in obtaining information on diet and distribution. Stable isotopes (SI) of carbon (13C/12C, δ13C) and nitrogen (15N/14N, δ15N) provide a two‐dimensional estimate of the dietary space of consumers; an animal's isotopic composition is directly influenced by what they consume and where they feed. Harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals are abundant phocid species found in the North Atlantic. We measured and contrasted SI values between seals sampled at nearshore and offshore sites to test for effects of sampling location, sex, age‐class, and body size to gain insight into how these species partition space and prey resources. In addition we contrasted previously published results for gray seals (Halichoerus grypus). Isotope values differed significantly by age class and location in harp and hooded seals. We found significant differences in SI values (mean δ13C and δ15N ± SE) between all species. Hooded seals, a continental shelf‐edge, deep‐diving species, exhibited low SI values (juveniles: ?20.9‰ ± 0.03‰, 13.36‰ ± 0.05‰; adults: ?20.41‰ ± 0.03‰, 14.81‰ ± 0.04‰) characteristic of feeding on meso‐ to bathypelagic prey. Harp seals, which dive to moderate depths primarily on the shelf had intermediate SI values (juveniles: ?20.53‰ ± 0.01‰, 13.91‰ ± 0.01‰; adults: ?20.13‰ ± 0.01‰, 14.96‰ ± 0.01‰) characteristic of feeding on epipelagic prey, whereas gray seals, which feed on or near the sea floor in shallow shelf waters, had high SI values (juveniles: ?19.74‰ ± 0.04‰, 17.51‰ ± 0.05‰; adults: ?18.86‰ ± 0.01‰, 17.23‰ ± 0.02‰) characteristic of feeding on demersal prey. In all species, δ13C values increased with body size and age in the same manner, indicating that seals exploit or forage in deeper habitats as they get larger and older. We hypothesize that the consistent ontogenetic shift in foraging niche, despite large differences between species in their diving behavior, geographic range and habitat use, not only reflects increased access to different prey due to increased diving capacity, but a progressive adjustment to balance energy budgets by reducing foraging costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号