首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
  • Stomata modulate the exchange of water and CO2 between plant and atmosphere. Although stomatal density is known to affect CO2 diffusion into the leaf and thus photosynthetic rate, the effect of stomatal density and patterning on CO2 assimilation is not fully understood.
  • We used wild types Col‐0 and C24 and stomatal mutants sdd1‐1 and tmm1 of Arabidopsis thaliana, differing in stomatal density and pattern, to study the effects of these variations on both stomatal and mesophyll conductance and CO2 assimilation rate. Anatomical parameters of stomata, leaf temperature and carbon isotope discrimination were also assessed.
  • Our results indicate that increased stomatal density enhanced stomatal conductance in sdd1‐1 plants, with no effect on photosynthesis, due to both unchanged photosynthetic capacity and decreased mesophyll conductance. Clustering (abnormal patterning formed by clusters of two or more stomata) and a highly unequal distribution of stomata between the adaxial and abaxial leaf sides in tmm1 mutants also had no effect on photosynthesis.
  • Except at very high stomatal densities, stomatal conductance and water loss were proportional to stomatal density. Stomatal formation in clusters reduced stomatal dynamics and their operational range as well as the efficiency of CO2 transport.
  相似文献   

2.
The FERONIA (FER) signaling pathway is known to have diverse roles in Arabidopsis thaliana, such as growth, reproduction, and defense, but how this receptor kinase is involved in various biological processes is not well established. In this work, we applied multiple mass spectrometry techniques to identify metabolites involved in the FER signaling pathway and to understand their biological roles. A direct infusion Fourier transform ion cyclotron resonance (FT‐ICR)‐MS approach was used for initial screening of wild‐type and feronia (fer) mutant plant extracts, and Arabidopsides were found to be significantly enriched in the mutant. As Arabidopsides are known to be induced by wounding, further experiments on wounded and non‐wounded leaf samples were carried out to investigate these oxylipins as well as related phytohormones using a quadrupole‐time‐of‐flight (Q‐TOF) MS by direct injection and LC‐MS/MS. In a root growth bioassay with Arabidopside A isolated from fer mutants, the wild‐type showed significant root growth inhibition compared with the fer mutant. Our results therefore implicated Arabidopsides, and Arabidopside A specifically, in FER functions and/or signaling. Finally, matrix‐assisted laser desorption/ionization MS imaging (MALDI‐MSI) was used to visualize the localization of Arabidopsides, and we confirmed that Arabidopsides are highly abundant at wounding sites in both wild‐type and fer mutant leaves. More significantly, five micron high‐spatial resolution MALDI‐MSI revealed that Arabidopsides are localized to the chloroplasts where many stress signaling molecules are made.  相似文献   

3.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

4.
The vesicle‐trafficking protein SYP121 (SYR1/PEN1) was originally identified in association with ion channel control at the plasma membrane of stomatal guard cells, although stomata of the Arabidopsis syp121 loss‐of‐function mutant close normally in ABA and high Ca2+. We have now uncovered a set of stomatal phenotypes in the syp121 mutant that reduce CO2 assimilation, slow vegetative growth and increase water use efficiency in the whole plant, conditional upon high light intensities and low relative humidity. Stomatal opening and the rise in stomatal transpiration of the mutant was delayed in the light and following Ca2+‐evoked closure, consistent with a constitutive form of so‐called programmed stomatal closure. Delayed reopening was observed in the syp121, but not in the syp122 mutant lacking the homologous gene product; the delay was rescued by complementation with wild‐type SYP121 and was phenocopied in wild‐type plants in the presence of the vesicle‐trafficking inhibitor Brefeldin A. K+ channel current that normally mediates K+ uptake for stomatal opening was suppressed in the syp121 mutant and, following closure, its recovery was slowed compared to guard cells of wild‐type plants. Evoked stomatal closure was accompanied by internalisation of GFP‐tagged KAT1 K+ channels in both wild‐type and syp121 mutant guard cells, but their subsequently recycling was slowed in the mutant. Our findings indicate that SYP121 facilitates stomatal reopening and they suggest that K+ channel traffic and recycling to the plasma membrane underpins the stress memory phenomenon of programmed closure in stomata. Additionally, they underline the significance of vesicle traffic for whole‐plant water use and biomass production, tying SYP121 function to guard cell membrane transport and stomatal control.  相似文献   

5.
Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H+, Ca2+ and K+ in guard cells of wild‐type (Col‐0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1‐1 and the PM H+‐ATPase mutants aha1‐6 and aha1‐7, using a non‐invasive micro‐test technique. We showed that MeJA induced transmembrane H+ efflux, Ca2+ influx and K+ efflux across the PM of Col‐0 guard cells. However, this ion transport was abolished in coi1‐1 guard cells, suggesting that MeJA‐induced transmembrane ion flux requires COI1. Furthermore, the H+ efflux and Ca2+ influx in Col‐0 guard cells was impaired by vanadate pre‐treatment or PM H+‐ATPase mutation, suggesting that the rapid H+ efflux mediated by PM H+‐ATPases could function upstream of the Ca2+ flux. After the rapid H+ efflux, the Col‐0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H+‐ATPase was reduced. Finally, the elevation of cytosolic Ca2+ concentration and the depolarized PM drive the efflux of K+ from the cell, resulting in loss of turgor and closure of the stomata.  相似文献   

6.
Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth‐promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress‐related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col‐0 and aba2‐1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro‐grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild‐type Col‐0 and on the mutant aba2‐1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col‐0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought.  相似文献   

7.
Lectin receptor‐like kinases (LecRKs) play important roles in the responses to adverse environment stress. Abscisic acid (ABA) is a plant hormone involved in plant growth, development and adverse environmental stress responses. Although some studies of ABA response LecRK genes have been reported, the molecular mechanisms of LecRKs regulation of downstream pathways under ABA induction are not well understood. The present study showed that LecRK‐VI.4 responded to ABA and negatively regulated stomatal closure. Here, a quantitative phosphoproteomics approach based on mass spectrometry was employed to study the roles of LecRK‐VI.4 in the ABA signaling pathway. Metal oxide affinity beads and C18 chromatography were used for phosphopeptide enrichment and separation. The isobaric tags for relative and absolute quantitation were used for profiling the phosphoproteome of mutant lecrk‐vi.4‐1 and wild‐type Col‐0 Arabidopsis under normal growth conditions or ABA treatments. In total, 475 unique phosphopeptides were quantified, including 81 phosphopeptides related to LecRK‐VI.4 regulation. Gene ontology, protein–protein interaction and motif analysis were performed. The bioinformatics data showed that phosphorylated proteins regulated by LecRK‐VI.4 had close relations with factors of stomatal function, which included aquaporin activity, H+ pump activity and the Ca2+ concentration in the cytoplasm. These data have expanded our understanding of how LecRK‐VI.4 regulates ABA‐mediated stomatal movements.  相似文献   

8.
Stomata mediate gas exchange between the inter‐cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2]. [CO2] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll‐deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll‐deficient. Interestingly, approximately 45% of stomata had an unusual, previously not‐described, morphology of thin‐shaped chlorophyll‐less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole‐leaf photosynthetic parameters (PSII, qP, qN, FV′/FM′) were comparable with wild‐type plants. Time‐resolved intact leaf gas‐exchange analyses showed a reduction in stomatal conductance and CO2‐assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2] shifts. Detailed stomatal aperture measurements of normal kidney‐shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2] elevation and abscisic acid (ABA), while thin‐shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll‐less stomata cause a ‘deflated’ thin‐shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production.  相似文献   

9.
Plant heterotrimeric G proteins modulate numerous developmental stress responses. Recently, receptor‐like kinases (RLKs) have been implicated as functioning with G proteins and may serve as plant G‐protein‐coupled‐receptors. The RLK FERONIA (FER), in the Catharantus roseus RLK1‐like subfamily, is activated by a family of polypeptides called rapid alkalinization factors (RALFs). We previously showed that the Arabidopsis G protein β subunit, AGB1, physically interacts with FER, and that RALF1 regulation of stomatal movement through FER requires AGB1. Here, we investigated genetic interactions of AGB1 and FER in plant salinity response by comparing salt responses in the single and double mutants of agb1 and fer. We show that AGB1 and FER act additively or synergistically depending on the conditions of the NaCl treatments. We further show that the synergism likely occurs through salt‐induced ROS production. In addition, we show that RALF1 enhances salt toxicity through increasing Na+ accumulation and decreasing K+ accumulation rather than by inducing ROS production, and that the RALF1 effect on salt response occurs in an AGB1‐independent manner. Our results indicate that RLK epistatic relationships are not fixed, as AGB1 and FER display different genetic relationships to RALF1 in stomatal versus salinity responses.  相似文献   

10.
本文以拟南芥野生型、ABC转运体缺失突变体(Atmrp4、Atmrp5和Atmrp4/5)为材料研究了硫化氢(hydrogensulfide,H2S)和ABC转运体在盐胁迫诱导拟南芥气孔关闭中的作用及其相互关系。结果表明,盐胁迫能够引起拟南芥叶片AtMRP4及AtMRP5表达量显著升高,诱导野生型拟南芥叶片气孔关闭,但对Atmrp4、Atmrp5及Atmrp4/5气孔开度无显著影响;而ABC转运体抑制剂格列本脲(glibenclamide,Gli)可减弱盐胁迫诱导的拟南芥气孔关闭的作用,表明ABC转运体参与盐胁迫诱导的拟南芥气孔关闭过程。盐胁迫能够引起野生型拟南芥H,s合成相关酶L-/D-半胱氨酸脱巯基酶(L-/D-CDes)活性及H2S含量显著升高,而ABc转运体抑制剂格列本脲处理后则没有这种变化,同时盐胁迫也不能引起Atmrp4、Atmrp5及Atmrp4/5的L-/19-CDes活性及H2S含量显著升高,表明ABC转运体位于H2s上游参与盐胁迫诱导气孔关闭过程。  相似文献   

11.
Under drought stress, the stress hormone ABA addresses the SnR kinase OST1 via its cytosolic receptor and the protein phosphatase ABI1. Upon activation, OST1 phosphorylates the guard cell S–type anion channel SLAC1. Arabidopsis ABI1 and OST1 loss‐of‐function mutants are characterized by an extreme wilting 'open stomata′ phenotype. Given the fact that guard cells express both SLAC‐ and R–/QUAC‐type anion channels, we questioned whether OST1, besides SLAC1, also controls the QUAC1 channel. In other words, are ABI1/OST1 defects preventing both of the guard cell anion channel types from operating properly in terms of stomatal closure? The activation of the R–/QUAC‐type anion channel by ABA signaling kinase OST1 and phosphatase ABI1 was analyzed in two experimental systems: Arabidopsis guard cells and the plant cell‐free background of Xenopus oocytes. Patch‐clamp studies on guard cells show that ABA activates R–/QUAC‐type currents of wild‐type plants, but to a much lesser extent in those of abi1–1 and ost1–2 mutants. In the oocyte system the co‐expression of QUAC1 and OST1 resulted in a pronounced activation of the R–type anion channel. These studies indicate that OST1 is addressing both S–/SLAC‐ and R–/QUAC‐type guard cell anion channels, and explain why the ost1–2 mutant is much more sensitive to drought than single slac1 or quac1 mutants.  相似文献   

12.
Ubiquitination is a critical post‐translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T‐DNA insertion mutant in the At5g10650 locus. Compared to wild‐type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C‐terminal C3HC4‐type Really Interesting New Gene (RING) motif, which was essential for ABA‐mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule‐associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1‐ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA‐promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild‐type levels of H2O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2O2 and calcium in the ABA‐mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2O2, and calcium, which in turn resulted in ABA‐hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild‐type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA‐mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.  相似文献   

13.
Due to their different lifestyles, effective defence against biotrophic pathogens normally leads to increased susceptibility to necrotrophs, and vice versa. Solving this trade‐off is a major challenge for obtaining broad‐spectrum resistance in crops and requires uncoupling the antagonism between the jasmonate (JA) and salicylate (SA) defence pathways. Pseudomonas syringae pv. tomato (Pto) DC3000, the causal agent of tomato bacterial speck disease, produces coronatine (COR) that stimulates stomata opening and facilitates bacterial leaf colonization. In Arabidopsis, stomata response to COR requires the COR co‐receptor AtJAZ2, and dominant AtJAZ2Δjas repressors resistant to proteasomal degradation prevent stomatal opening by COR. Here, we report the generation of a tomato variety resistant to the bacterial speck disease caused by PtoDC3000 without compromising resistance to necrotrophs. We identified the functional ortholog of AtJAZ2 in tomato, found that preferentially accumulates in stomata and proved that SlJAZ2 is a major co‐receptor of COR in stomatal guard cells. SlJAZ2 was edited using CRISPR/Cas9 to generate dominant JAZ2 repressors lacking the C‐terminal Jas domain (SlJAZ2Δjas). SlJAZ2Δjas prevented stomatal reopening by COR and provided resistance to PtoDC3000. Water transpiration rate and resistance to the necrotrophic fungal pathogen Botrytis cinerea, causal agent of the tomato gray mold, remained unaltered in Sljaz2Δjas plants. Our results solve the defence trade‐off in a crop, by spatially uncoupling the SA‐JA hormonal antagonism at the stomata, entry gates of specific microbes such as PtoDC3000. Moreover, our results also constitute a novel CRISPR/Cas‐based strategy for crop protection that could be readily implemented in the field.  相似文献   

14.
15.
Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit, AGB1, is required for four guard cell Cao responses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cyt oscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit, GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements of agb1 mutants and agb1/gpa1 double‐mutants, as well as those of the agg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast with ABA‐regulated stomatal movements, which involve GPA1 and AGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding. AGB1 knockouts retained reactive oxygen species and NO production, but lost YC3.6‐detected [Ca2+]cyt oscillations in response to Cao, initiating only a single [Ca2+]cyt spike. Experimentally imposed [Ca2+]cyt oscillations restored stomatal closure in agb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed that AGB1 interacts with phospholipase Cs (PLCs), and Cao induced InsP3 production in Col but not in agb1. In sum, G‐protein signaling via AGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Cao apparently require Ca2+‐induced Ca2+ release that is likely dependent on Gβγ interaction with PLCs leading to InsP3 production.  相似文献   

16.
Asymmetric cell division is important for regulating cell proliferation and fate determination during stomatal development in plants. Although genes that control asymmetric division and cell differentiation in stomatal development have been reported, regulators controlling the process from asymmetric division to cell differentiation remain poorly understood. Here, we report a weak allele (fk–J3158) of the Arabidopsis sterol C14 reductase gene FACKEL (FK) that shows clusters of small cells and stomata in leaf epidermis, a common phenomenon that is often seen in mutants defective in stomatal asymmetric division. Interestingly, the physical asymmetry of these divisions appeared to be intact in fk mutants, but the cell‐fate asymmetry was greatly disturbed, suggesting that the FK pathway links these two crucial events in the process of asymmetric division. Sterol profile analysis revealed that the fk–J3158 mutation blocked downstream sterol production. Further investigation indicated that cyclopropylsterol isomerase1 (cpi1), sterol 14α–demethylase (cyp51A2) and hydra1 (hyd1) mutants, corresponding to enzymes in the same branch of the sterol biosynthetic pathway, displayed defective stomatal development phenotypes, similar to those observed for fk. Fenpropimorph, an inhibitor of the FK sterol C14 reductase in Arabidopsis, also caused these abnormal small‐cell and stomata phenotypes in wild‐type leaves. Genetic experiments demonstrated that sterol biosynthesis is required for correct stomatal patterning, probably through an additional signaling pathway that has yet to be defined. Detailed analyses of time‐lapse cell division patterns, stomatal precursor cell division markers and DNA ploidy suggest that sterols are required to properly restrict cell proliferation, asymmetric fate specification, cell‐fate commitment and maintenance in the stomatal lineage cells. These events occur after physical asymmetric division of stomatal precursor cells.  相似文献   

17.
18.
Integrative studies of plant growth require spatially and temporally resolved information from high‐throughput imaging systems. However, analysis and interpretation of conventional two‐dimensional images is complicated by the three‐dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping4D uses a light‐field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three‐dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping4D was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping4D, we compare diurnal changes in Arabidopsis thaliana wild‐type Col‐0 and the starchless pgm mutant. Compared to Col‐0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light‐field camera systems as a tool to accurately measure morphological and growth‐related features in plants.  相似文献   

19.
Like their animal counterparts, plant glutamate receptor‐like (GLR) homologs are intimately associated with Ca2+ influx through plasma membrane and participate in various physiological processes. In pathogen‐associated molecular patterns (PAMP)‐/elicitor‐mediated resistance, Ca2+ fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca2+] ([Ca2+]cyt) variations, nitric oxide (NO) production, reactive oxygen species (ROS) production and expression of defense‐related genes by OGs. In addition, wild‐type Col‐0 plants treated with the glutamate‐receptor antagonist 6,7‐dinitriquinoxaline‐2,3‐dione (DNQX) had a compromised resistance to Botrytis cinerea and Hyaloperonospora arabidopsidis. Moreover, we provide genetic evidence that AtGLR3.3 is a key component of resistance against Harabidopsidis. In addition, some OGs‐triggered immune events such as defense gene expression, NO and ROS production are also to different extents dependent on AtGLR3.3. Taken together, these data provide evidence for the involvement of GLRs in elicitor/pathogen‐mediated plant defense signaling pathways in Arabidopsis thaliana.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号