首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phages play critical roles in the spread of virulence factors and control of bacterial populations through their predation of bacteria. An essential step in the phage lifecycle is genome entry, where the infecting phage must productively interact with the components of the bacterial cell envelope in order to transmit its genome out of the viral particle and into the host cell cytoplasm. In this study, we characterize this process for the Escherichia coli phage HK97. We have discovered that HK97 genome injection requires the activities of the inner membrane glucose transporter protein, PtsG, and the periplasmic chaperone, FkpA. The requirements for PtsG and FkpA are determined by the sequence of the phage tape measure protein (TMP). We also identify a region of the TMP that mediates inhibition of phage genome injection by the HK97 superinfection exclusion protein, gp15. This region of the TMP also determines the PtsG requirement, and we show that gp15‐mediated inhibition requires PtsG. Based on these data, we present a model for the in vivo genome injection process of phage HK97 and postulate a mechanism by which the inhibitory action of gp15 is reliant upon PtsG.  相似文献   

2.
A phage moron is a DNA element inserted between a pair of genes in one phage genome that are adjacent in other related phage genomes. Phage morons are commonly found within phage genomes, and in a number of cases, they have been shown to mediate phenotypic changes in the bacterial host. The temperate phage HK97 encodes a moron element, gp15, within its tail morphogenesis region that is absent in most closely related phages. We show that gp15 is actively expressed from the HK97 prophage and is responsible for providing the host cell with resistance to infection by phages HK97 and HK75, independent of repressor immunity. To identify the target(s) of this gp15-mediated resistance, we created a hybrid of HK97 and the related phage HK022. This hybrid phage revealed that the tail tube or tape measure proteins likely mediate the susceptibility of HK97 to inhibition by gp15. The N terminus of gp15 is predicted with high probability to contain a single membrane-spanning helix by several transmembrane prediction programs. Consistent with this putative membrane localization, gp15 acts to prevent the entry of phage DNA into the cytoplasm, acting in a manner reminiscent of those of several previously characterized superinfection exclusion proteins. The N terminus of gp15 and its phage homologues bear sequence similarity to YebO proteins, a family of proteins of unknown function found ubiquitously in enterobacteria. The divergence of their C termini suggests that phages have co-opted this bacterial protein and subverted its activity to their advantage.  相似文献   

3.
Temperate phages were induced from Streptococcus cremoris R1, BK5, and 134. DNA from the three induced phages was shown to be homologous with prophage DNA in the bacterial chromosomes of their lysogenic hosts by the Southern blot hybridization technique. 32P-labeled DNA from 11 lytic phages which had been isolated on cheese starters was similarly hybridized with DNA from 36 strains of lactic streptococci. No significant homology was detected between the phage and bacterial DNA. Phages and lactic streptococci used included phages isolated in a recently opened cheese plant and all the starter strains used in the plant since it commenced operation. The three temperate phages were compared by DNA-DNA hybridizations with 25 lytic phages isolated on cheese starters. Little or no homology was found between DNA from the temperate and lytic phages. In contrast, temperate phages showed a partial relationship with one another. Temperate phage DNA also showed partial homology with DNA from a number of strains of lactic streptococci, many of which have been shown to be lysogenic. This suggests that many temperate phages in lactic streptococci may be related to one another and therefore may be homoimmune with one another. These findings indicate that the release of temperate phages from starter cells currently in use is unlikely to be the predominant source of lytic phages in cheese plants.  相似文献   

4.
Enterobacter sakazakii (Cronobacter spp.) is an opportunistic pathogen, which can cause rare, but life‐threatening infections in neonates and infants through feeding of a contaminated milk formula. We isolated 67 phages from environmental samples and tested their lytic host range on a representative collection of 40 E. sakazakii strains. A cocktail of five phages prevented the outgrowth of 35 out of 40 test strains in artificially contaminated infant formula. Two E. sakazakii phages represented prolate head Myoviridae. Molecular tests identified them as close relatives of Escherichia coli phage T4. The remaining three phages represented isometric head Myoviridae with large genome size of 140 and 200 kb, respectively, which belonged to two different DNA hybridization groups. A high dose of 108 pfu ml?1 of phage could effectively sterilize a broth contaminated with both high and low pathogen counts (106 and 102 cfu ml?1). In contrast, broth inoculated with 104 phage and 102 bacteria per ml first showed normal bacterial growth until reaching a cell titre of 105 cfu ml?1. Only when crossing this threshold, phage replication started, but it could not reduce the contamination level below 100 cfu ml?1. Phages could be produced with titres of 1010 pfu ml?1 in broth culture, but they were not stable upon freeze‐drying. Addition of trehalose or milk formula stabilized the phage preparation, which then showed excellent storage stability even at elevated temperature.  相似文献   

5.
Bacteriophages and its applications: an overview   总被引:1,自引:0,他引:1  
Bacteriophages (or phages), the most abundant viral entity of the planet, are omni-present in all the ecosystems. On the basis of their unique characteristics and anti-bacterial property, phages are being freshly evaluated taxonomically. Phages replicate inside the host either by lytic or lysogenic mode after infecting and using the cellular machinery of a bacterium. Since their discovery by Twort and d’Herelle in the early 1900s, phage became an important agent for combating pathogenic bacteria in clinical treatments and its related research gained momentum. However, due to recent emergence of bacterial resistance on antibiotics, applications of phage (phage therapy) become an inevitable option of research. Phage particles become popular as a biotechnological tool and treatment of pathogenic bacteria in a range of applied areas. However, there are few concerns over the application of phage-based solutions. This review deals with the updated phage taxonomy (ICTV 2015 Release and subsequent revision) and phage biology and the recent development of its application in the areas of biotechnology, biosensor, therapeutic medicine, food preservation, aquaculture diseases, pollution remediation, and wastewater treatment and issues related with limitations of phage-based remedy.  相似文献   

6.
Bacteria have obtained a variety of resistance mechanisms including toxin‐antitoxin (TA) systems against bacteriophages (phages), whereas phages have also evolved to overcome bacterial anti‐phage mechanisms. Dmd from T4 phage can suppress the toxicities of homologous toxins LsoA and RnlA from Escherichia coli, representing the first example of a phage antitoxin against multiple bacterial toxins in known TA systems. Here, the crystal structure of LsoA‐Dmd complex showed Dmd is inserted into the deep groove between the N‐terminal repeated domain (NRD) and the Dmd‐binding domain (DBD) of LsoA. The NRD shifts significantly from a ‘closed’ to an ‘open’ conformation upon Dmd binding. Site‐directed mutagenesis of Dmd revealed the conserved residues (W31 and N40) are necessary for LsoA binding and the toxicity suppression as determined by pull‐down and cell toxicity assays. Further mutagenesis identified the conserved Dmd‐binding residues (R243, E246 and R305) of LsoA are vital for its toxicity, and suggested Dmd and LsoB may possess different inhibitory mechanisms against LsoA toxicity. Our structure‐function studies demonstrate Dmd can recognize LsoA and inhibit its toxicity by occupying the active site possibly via substrate mimicry. These findings have provided unique insights into the defense and counter‐defense mechanisms between bacteria and phages in their co‐evolution.  相似文献   

7.
Bacteriophages of lactobacilli   总被引:13,自引:0,他引:13  
Lactobacilli are members of the bacterial flora of lactic starter cultures used to generate lactic acid fermentation in a number of animal or plant products used as human or animals foods. They can be affected by phage outbreaks, which can result in faulty and depreciated products. Two groups of phages specific of Lactobacillus casei have been thoroughly studied. 1. The first group is represented by phage PL-1. This phage behaves as lytic in its usual host L. casei ATCC 27092, but can lysogenize another strain, L. casei ATCC 334. Bacterial receptors of this phage are located in a cell-wall polysaccharide and rhamnose is the main component of the receptors. Ca2+ and adenosine triphosphate (ATP) are indispensable to ensure the injection of the phage DNA into the bacterial cell. The phage DNA is double-stranded, mostly linear, but with cohesive ends which enables it to be circularized. The vegetative growth of PL-1 proceeds according to the classical mode. Cell lysis is produced by an N-acetyl-muramidase at the end of vegetative growth. 2. The second group is represented by the temperate phage phi FSW of L. casei ATCC27139. It has been shown how virulent phages originate from this temperate phage in Japanese dairy plants. The lysogenic state of phi FSW can be altered either by point mutations or by the insertion of a mobile genetic element called ISL 1, which comes from the bacterial chromosome. This is the first transposable element that has been described in lactobacilli. Lysogeny appears to be widespread among lactobacilli since one study showed that 27% of 148 strains studied, representing 15 species, produced phage particles after induction by mitomycin C. Similarly, 23 out of 30 strains of Lactobacillus salivarius are lysogenic and produce, after induction by mitomycin C, temperate phages, killer particles, or defective phages. Temperate phages have also been found in 10 out of 105 strains of Lactobacillus bulgaricus or Lactobacillus lactis after induction by mitomycin C. Phages so far studied of the latter 2 and closely related lactobacilli, either temperate or isolated as lytic, may be divided into 4 unrelated groups called a, b, c and d. Most of these phages are found in group a and an unquestionable relationship has already been shown between lytic phages and temperate phages that belong to this group. Lytic phage LL-H of L. lactis LL 23, isolated in Finland, is one of the most representative of those of group a and has been extensively studied on the molecular level.  相似文献   

8.
Phages of the P335 group have recently emerged as important taxa among lactococcal phages that disrupt dairy fermentations. DNA sequencing has revealed extensive homologies between the lytic and temperate phages of this group. The P335 lytic phage phi31 encodes a genetic switch region of cI and cro homologs but lacks the phage attachment site and integrase necessary to establish lysogeny. When the putative cI repressor gene of phage phi31 was subcloned into the medium-copy-number vector pAK80, no superinfection immunity was conferred to the host, Lactococcus lactis subsp. lactis NCK203, indicating that the wild-type CI repressor was dysfunctional. Attempts to clone the full-length cI gene in Lactococcus in the high-copy-number shuttle vector pTRKH2 were unsuccessful. The single clone that was recovered harbored an ochre mutation in the cI gene after the first 128 amino acids of the predicted 180-amino-acid protein. In the presence of the truncated CI construct, pTRKH2::CI-per1, phage phi31 was inhibited to an efficiency of plaquing (EOP) of 10(-6) in NCK203. A pTRKH2 subclone which lacked the DNA downstream of the ochre mutation, pTRKH2::CI-per2, confirmed the phenotype and further reduced the phi31 EOP to <10(-7). Phage phi31 mutants, partially resistant to CI-per, were isolated and showed changes in two of three putative operator sites for CI and Cro binding. Both the wild-type and truncated CI proteins bound the two wild-type operators in gel mobility shift experiments, but the mutated operators were not bound by the truncated CI. Twelve of 16 lytic P335 group phages failed to form plaques on L. lactis harboring pTRKH2::CI-per2, while 4 phages formed plaques at normal efficiencies. Comparisons of amino acid and DNA level homologies with other lactococcal temperate phage repressors suggest that evolutionary events may have led to inactivation of the phi31 CI repressor. This study demonstrated that a number of different P335 phages, lytic for L. lactis NCK203, have a common operator region which can be targeted by a truncated derivative of a dysfunctional CI repressor.  相似文献   

9.
Phages, as well as phage-derived proteins, especially lysins and depolymerases, are intensively studied to become prospective alternatives or supportive antibacterials used alone or in combination. In the common phage therapy approach, the unwanted emergence of phage-resistant variants from the treated bacterial population can be postponed or reduced by the utilization of an effective phage cocktail. In this work, we present a publicly available web tool PhREEPred (Phage Resistance Emergence Prediction) (https://phartner.shinyapps.io/PhREEPred/), which will allow an informed choice of the composition of phage cocktails by predicting the outcome of phage cocktail or phage/depolymerase combination treatments against encapsulated bacterial pathogens given a mutating population that escapes single phage treatment. PhREEPred simulates solutions of our mathematical model calibrated and tested on the experimental Klebsiella pneumoniae setup and Klebsiella-specific lytic phages: K63 type-specific phage KP34 equipped with a capsule-degrading enzyme (KP34p57), capsule-independent myoviruses KP15 and KP27, and recombinant capsule depolymerase KP34p57. The model can calculate the phage-resistance emergence depending on the bacterial growth rate and initial density, the multiplicity of infection, phage latent period, its infectiveness and the cocktail composition, as well as initial depolymerase concentration and activity rate. This model reproduced the experimental results and showed that (i) the phage cocktail of parallelly infecting phages is less effective than the one composed of sequentially infecting phages; (ii) depolymerase can delay or prevent bacterial resistance by unveiling an alternative receptor for initially inactive phages. In our opinion, this customer-friendly web tool will allow for the primary design of the phage cocktail and phage-depolymerase combination effectiveness against encapsulated pathogens.  相似文献   

10.
Bacteriophages are present in virtually all ecosystems, and bacteria have developed multiple antiphage strategies to counter their attacks. Clostridium difficile is an important pathogen causing severe intestinal infections in humans and animals. Here we show that the conserved cell‐surface protein CwpV provides antiphage protection in C. difficile. This protein, for which the expression is phase‐variable, is classified into five types, each differing in their repeat‐containing C‐terminal domain. When expressed constitutively from a plasmid or the chromosome of locked ‘ON’ cells of C. difficile R20291, CwpV conferred antiphage protection. Differences in the level of phage protection were observed depending on the phage morphological group, siphophages being the most sensitive with efficiency of plaquing (EOP) values of < 5 × 10?7 for phages ?CD38‐2, ?CD111 and ?CD146. Protection against the myophages ?MMP01 and ?CD52 was weaker, with EOP values between 9.0 × 10?3 and 1.1 × 10?1. The C‐terminal domain of CwpV carries the antiphage activity and its deletion, or part of it, significantly reduced the antiphage protection. CwpV does not affect phage adsorption, but phage DNA replication is prevented, suggesting a mechanism reminiscent of superinfection exclusion systems normally encoded on prophages. CwpV thus represents a novel ubiquitous host‐encoded and phase‐variable antiphage system in C. difficile.  相似文献   

11.
Phages depend on their bacterial hosts to replicate. The habitat, density and genetic diversity of host populations are therefore key factors in phage ecology, but our ability to explore their biology depends on the isolation of a diverse and representative collection of phages from different sources. Here, we compared two populations of marine bacterial hosts and their phages collected during a time series sampling program in an oyster farm. The population of Vibrio crassostreae, a species associated specifically to oysters, was genetically structured into clades of near clonal strains, leading to the isolation of closely related phages forming large modules in phage–bacterial infection networks. For Vibrio chagasii, which blooms in the water column, a lower number of closely related hosts and a higher diversity of isolated phages resulted in small modules in the phage–bacterial infection network. Over time, phage load was correlated with V. chagasii abundance, indicating a role of host blooms in driving phage abundance. Genetic experiments further demonstrated that these phage blooms can generate epigenetic and genetic variability that can counteract host defence systems. These results highlight the importance of considering both the environmental dynamics and the genetic structure of the host when interpreting phage–bacteria networks.  相似文献   

12.
13.
Bacterial viruses (phages) are abundant, ecologically important biological entities. However, our understanding of their impact is limited by model systems that are primarily not well represented in nature, e.g. Enterophages and their hosts. Here, we investigate genomic characteristics and infection strategies among six aquatic Bacteroidetes phages that represent two genera of exceptionally large (~70–75 kb genome) podoviruses, which were isolated from the same seawater sample using Cellulophaga baltica as host. Quantitative host range studies reveal that these genera have contrasting narrow (specialist) and broad (generalist) host ranges, with one‐step growth curves revealing reduced burst sizes for the generalist phages. Genomic comparisons suggest candidate genes in each genus that might explain this host range variation, as well as provide hypotheses about receptors in the hosts. One generalist phage, φ38:1, was more deeply characterized, as its infection strategy switched from lytic on its original host to either inefficient lytic or lysogenic on an alternative host. If lysogenic, this phage was maintained extrachromosomally in the alternative host and could not be induced by mitomycin C. This work provides fundamental knowledge regarding phage‐host ranges and their genomic drivers while also exploring the ‘host environment’ as a driver for switching phage replication mode.  相似文献   

14.
Phages are highly abundant in the environment and pose a major threat for bacteria. Therefore, bacteria have evolved sophisticated defence systems to withstand phage attacks. Here, we describe a previously unknown mechanism by which mono- and diderm bacteria survive infection with diverse lytic phages. Phage exposure leads to a rapid and near-complete conversion of walled cells to a cell-wall-deficient state, which remains viable in osmoprotective conditions and can revert to the walled state. While shedding the cell wall dramatically reduces the number of progeny phages produced by the host, it does not always preclude phage infection. Altogether, these results show that the formation of cell-wall-deficient cells prevents complete eradication of the bacterial population and suggest that cell wall deficiency may potentially limit the efficacy of phage therapy, especially in highly osmotic environments or when used together with antibiotics that target the cell wall.  相似文献   

15.
Aims: To examine effects of various environmental factors on adsorption and inactivation of Pseudomonas aeruginosa‐specific phages: δ (family Podoviridae), J‐1, σ‐1 and 001A (family Siphoviridae) and their ability to inhibit bacterial growth and biofilm formation. Methods and Results: The phages examined in the study were clonally different, as revealed by RFLP. The temperature in the range 7–44°C had no influence on the adsorption of Podoviridae, but did affect Siphoviridae adsorption, particularly 001A. All phages were significantly stable at pH 5–9, and phages δ and 001A even at pH 3. Most of the examined carbohydrates and exopolysaccharides of the original host efficiently inactivated phage δ, while phages σ‐1 and J‐1 were inactivated considerably only by the amino acid alanine. Silver nitrate efficiently inactivated all the phages, while Siphoviridae were more resistant to povidone‐iodine. Serum of nonimmunized rats had no influence on phage inactivation and adsorption. Only phage δ showed ability to effectively inhibit in vitro bacterial growth and biofilm formation. Conclusions: The examined environmental parameters can significantly influence the adsorption and viability of Ps. aeruginosa‐specific phages. The phage δ is a good candidate for biocontrol of Ps. aeruginosa. Significance and Impact of the Study: The study provides important data on Ps. aeruginosa‐specific phage adsorption, inactivation and in vitro lytic efficacy.  相似文献   

16.
An individual-based model (IbM) for bacterial adaptation and evolution, COSMIC-Rules, has been employed to simulate interactions of virtual temperate bacteriophages (phages) and their bacterial hosts. Outcomes of infection mimic those of a phage such as lambda, which can enter either the lytic or lysogenic cycle, depending on the nutritional status of the host. Infection of different hosts possessing differing restriction and modification systems is also simulated. Phages restricted upon infection of one restricting host can be adapted (by host-controlled modification of the phage genome) and subsequently propagate with full efficiency on this host. However, such ability is lost if the progeny phages are passaged through a new host with a different restriction and modification system before attempted re-infection of the original restrictive host. The simulations show that adaptation and re-adaptation to a particular host-controlled restriction and modification system result in lower efficiency and delayed lysis of bacterial cells compared with infection of non-restricting host bacteria.  相似文献   

17.
The typing bacteriophages 55, 80, 83A, and 85 of Staphylococcus aureus, representative of the three major lytic groups of serological group B aureophages, have been examined for relatedness of their genomes and virion proteins. Phages 11 and 80 alpha were also examined to determine the relationship of phage 80 alpha to phages 11 and 80. Total genome hybridization measurements divided the phages into two groups. Phages 55 and 80, in the first group, had DNA homology of 50%. Phages 11, 80 alpha, 83A, and 85 formed a second group with 27 to 65% homology. Homology between the two groups was in the range of 14 to 22%. Phage 80 alpha is more closely related to phage 11 than to phage 80, though it is probably not a simple recombinant of phages 11 and 80. Restriction enzyme digestion and phage [32P]DNA hybridization analysis of the endonuclease-generated fragments from each phage DNA confirmed the findings of the DNA homology measurements. The endonuclease fragment patterns generated by EcoRI and HindIII were distinctive for each phage, confirming that none of the phages are closely related. Common sequences were present in most fragments from the phage DNAs when the labeled probe DNA was from a different phage in the same group. Cross-group probing of endonuclease fragments revealed both a diminished level of homology when similar sequences were present and the probable absence of some sequences. Virion proteins, examined by polyacrylamide gel electrophoresis, were similar in number and molecular weight for phages 11, 80 alpha, 83A, and 85, reflecting the DNA homology analyses. The virion proteins from phages 55 and 80, however, were more distinctive, and both differed from the phages in the other group.  相似文献   

18.

Aims

This study aimed to characterize the impact of lytic and temperate bacteriophages on the genetic and phenotypic diversity of Mannheimia haemolytica from feedlot cattle.

Methods and Results

Strictly lytic phages were not detected from bovine nasopharyngeal (n = 689) or water trough (n = 30) samples, but Myoviridae‐ or Siphoviridae‐like phages were induced from 54 of 72 M. haemolytica strains by mitomycin C, occasionally from the same strain. Phages with similar restriction fragment length polymorphism profiles (RFLP ≥70% relatedness) shared common host serotypes 1 or 2 (< 0·000 1). Likewise, phages with similar RFLP tended to occur in genetically related host bacteria (70–79% similarity). Host range assays showed that seven phages from host serotypes 1, 2 and 6 lysed representative strains of serotypes 1, 2 or 8. The genome of vB_MhM_1152AP from serotype 6 was found to be collinear with P2‐like phage φMhaA1‐PHL101.

Conclusions

Prophages are a significant component of the genome of M. haemolytica and contribute significantly to host diversity. Further characterization of the role of prophage in virulence and persistence of M. haemolytica in cattle could provide insight into approaches to control this potential respiratory pathogen.

Significance and Impact of the Study

This study demonstrated that prophages are widespread within the genome of M. haemolytica isolates and emphasized the challenge of isolating lytic phage as a therapeutic against this pathogen.  相似文献   

19.
Summary During large-scale cultivation of Leuconostoc oenos strain 58N, growth inhibition was detected and attributed to the presence of the virulent phage P581. To determine if this phage originated from a temperate phage, L. oenos 58N was exposed to mitomycin C, and this treatment led indeed to release of phages (P58II). Further examination of the lytic potential of phages P581 and P58II revealed that these two phages were able to lyse the same strains of L. oenos with the exception of the original host strain, which was only sensitive to P581. Results of DNA/DNA hybridization experiments failed to show homology between the DNA of phage P58II and the chromosomal DNA of L. oenos 58N. A phage-free culture of L. oenos 58N could be obtained after repeated subculture. These results indicate that the original L. oenos 58N was in a special type of phage-carrier state. Phages P58I and P58II were compared on the basis of morphology, lytic spectra, restriction enzyme analysis, DNA homology, genome size and protein structure and proved to be identical. It is assumed that P58I arose from the phage-carrier culture of L. oenos 58N and became virulent by some mutational event.Offprint requests to: E. K. Arendt  相似文献   

20.
Aims: Salmonella is a worldwide foodborne pathogen causing acute enteric infections in humans. In the recent years, the use of bacteriophages has been suggested as a possible tool to combat this zoonotic pathogen in poultry farms. This work aims to isolate and perform comparative studies of a group of phages active against a collection of specific Salmonella Enteritidis strains from Portugal and England. Also, suitable phage candidates for therapy of poultry will be selected. Methods and Results: The Salm. Enteritidis strains studied were shown to have a significantly high occurrence of defective (cryptic) prophages; however, no live phages were found in the strains. Bacteriophages isolated from different environments lysed all except one of the tested Salm. Enteritidis strains. The bacteriophages studied were divided into different groups according to their genetic homology, RFLP profiles and phenotypic features, and most of them showed no DNA homology with the bacterial hosts. The bacteriophage lytic efficacy proved to be highly dependent on the propagation host strain. Conclusions: Despite the evidences shown in this work that the Salm. Enteritidis strains used did not produce viable phages, we have confirmed that some phages, when grown on particular hosts, behaved as complexes of phages. This is most likely because of the presence of inactive phage‐related genomes (or their parts) in the bacterial strains which are capable of being reactivated or which can recombine with lytic phages. Furthermore, changes of the bacterial hosts used for maintenance of phages must be avoided as these can drastically modify the parameters of the phage preparations, including host range and lytic activity. Significance and Impact of the Study: This work shows that the optimal host and growth conditions must be carefully studied and selected for the production of each bacteriophage candidate for animal therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号