首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Valsa mali is the causal agent of apple Valsa canker, a destructive disease in East Asia. Effector proteins play important roles in the virulence of phytopathogenic fungi, and we identified five Hce2 domain-containing effectors (VmHEP1, VmHEP2, VmHEP3, VmHEP4 and VmHEP5) from the V. mali genome. Amongst these, VmHEP1 and VmHEP2 were found to be up-regulated during the early infection stage and VmHEP1 was also identified as a cell death inducer through its transient expression in Nicotiana benthamiana. Although the deletion of each single VmHEP gene did not lead to a reduction in virulence, the double-deletion of VmHEP1 and VmHEP2 notably attenuated V. mali virulence in both apple twigs and leaves. An evolutionary analysis revealed that VmHEP1 and VmHEP2 are two paralogues, under purifying selection. VmHEP1 and VmHEP2 are located next to each other on chromosome 11 as tandem genes with only a 604 bp physical distance. Interestingly, the deletion of VmHEP1 promoted the expression of VmHEP2 and, vice versa, the deletion of VmHEP2 promoted the expression of VmHEP1. The present results provide insights into the functions of Hce2 domain-containing effectors acting as virulence factors of V. mali, and provide a new perspective regarding the contribution of tandem genes to the virulence of phytopathogenic fungi.  相似文献   

4.
5.
Although chitin is an essential component of the fungal cell wall (CW), its biosynthesis and role in virulence is poorly understood. In Aspergillus fumigatus, there are eight chitin synthase (CHS) genes belonging to two families CHSA‐C, CHSG in family 1 and CHSF, CHSD, CSMA, CSMB in family 2). To understand the function of these CHS genes, their single and multiple deletions were performed using β‐rec/six system to be able to delete all genes within each family (up to a quadruple ΔchsA/C/B/G mutant in family 1 and a quadruple ΔcsmA/csmB/F/D mutant in family 2). Radial growth, conidiation, mycelial/conidial morphology, CW polysaccharide content, Chs‐activity, susceptibility to antifungal molecules and pathogenicity in experimental animal aspergillosis were analysed for all the mutants. Among the family 1 CHS, ΔchsA, ΔchsB and ΔchsC mutants showed limited impact on chitin synthesis. In contrast, there was reduced conidiation, altered mycelial morphotype and reduced growth and Chs‐activity in the ΔchsG and ΔchsA/C/B/G mutants. In spite of this altered phenotype, these two mutants were as virulent as the parental strain in the experimental aspergillosis models. Among family 2 CHS, phenotypic defects mainly resulted from the CSMA deletion. Despite significant morphological mycelial and conidial growth phenotypes in the quadruple ΔcsmA/csmB/F/D mutant, the chitin content was poorly affected by gene deletions in this family. However, the entire mycelial cell wall structure was disorganized in the family 2 mutants that may be related to the reduced pathogenicity of the quadruple ΔcsmA/csmB/F/D mutant strain compared to the parental strain, in vivo. Deletion of the genes encompassing the two families (ΔcsmA/csmB/F/G) showed that in spite of being originated from an ancient divergence of fungi, these two families work cooperatively to synthesize chitin in A. fumigatus and demonstrate the essentiality of chitin biosynthesis for vegetative growth, resistance to antifungal drugs, and virulence of this filamentous fungus.  相似文献   

6.
Fungal pathogens provoke devastating losses in agricultural production, contaminate food with mycotoxins and give rise to life‐threatening infections in humans. The soil‐borne ascomycete Fusarium oxysporum attacks over 100 different crops and can cause systemic fusariosis in immunocompromised individuals. Here we functionally characterized VeA, VelB, VelC and LaeA, four components of the velvet protein complex which regulates fungal development and secondary metabolism. Deletion of veA, velB and to a minor extent velC caused a derepression of conidiation as well as alterations in the shape and size of microconidia. VeA and LaeA were required for full virulence of F. oxysporum on tomato plants and on immunodepressed mice. A critical contribution of velvet consists in promoting chromatin accessibility and expression of the biosynthetic gene cluster for beauvericin, a depsipeptide mycotoxin that functions as a virulence determinant. These results reveal a conserved role of the velvet complex during fungal infection on plants and mammals.  相似文献   

7.
【目的】非核糖体多肽合成酶(NRPS)在植物病原真菌与其寄主互作过程中发挥着重要作用,明确Vm NRPS12基因在苹果树腐烂病菌致病过程中的功能,将为今后深入研究苹果树腐烂病菌NRPS作用机制提供理论依据。【方法】基于苹果树腐烂病菌全基因组数据,得到VmNRPS12基因。运用qRT-PCR技术分析VmNRPS12在侵染初期的表达水平,利用Double-joint PCR和PEG介导的原生质体转化获得该基因抗潮霉素的突变体,对突变体进行PCR检测及Southern blot验证得到敲除突变体,进一步通过重新导入该基因全长片段获得互补突变体,最后对野生型、敲除突变体和互补突变体进行菌落、产孢及致病力观察,对检测数据用SPSS软件进行差异显著性分析。【结果】定量分析显示该基因在侵染初期显著上调表达,且接种48 h后的表达量是对照的138.6倍。该基因的敲除突变体在营养生长及产孢方面与野生型菌株03-8相比无显著性差异,但致病力与野生型菌株03-8相比显著减弱,且互补突变体致病力近似恢复至野生型水平。【结论】VmNRPS12基因与苹果树腐烂病菌致病性相关。  相似文献   

8.
Summary Mutants ofXanthomonas campestris B 1459 were isolated that are defective in secretion of both cellulase and amylase. Both enzymes accumulated in the periplasmic space. The defects in secretion of cellulase or amylase were partly overcome by introducing into the mutants specific multiple copies of DNA cloned fromX. campestris, and presumed to code for cellulase or amylase enzymes. The mutant strains also showed reduced amounts of extracellular pectinase and protease activities, as if the mutants were generally defective for secretion of extracellular enzymes. The mutants showed reduced pathogenesis for turnip seedlings. The secretion-defective mutants may allow production of xanthan gum with reduced cellulose, pectin, protein and starch-degrading enzyme activities, thereby allowing more widespread mixing of microbially produced xanthan gum with these commercially important water-soluble polymers.  相似文献   

9.
10.
Penicillium decumbens has been used in the industrial production of lignocellulolytic enzymes in China for more than 15 years. Conidiation is essential for most industrial fungi because conidia are used as starters in the first step of fermentation. To investigate the mechanism of conidiation in P. decumbens, we generated mutants defective in two central regulators of conidiation, FluG and BrlA. Deletion of fluG resulted in neither “fluffy” phenotype nor alteration in conidiation, indicating possible different upstream mechanisms activating brlA between P. decumbens and Aspergillus nidulans. Deletion of brlA completely blocked conidiation. Further investigation of brlA expression in different media (nutrient-rich or nutrient-poor) and different culture states (liquid or solid) showed that brlA expression is required but not sufficient for conidiation. The brlA deletion strain exhibited altered hyphal morphology with more branches. Genome-wide expression profiling identified BrlA-dependent genes in P. decumbens, including genes previously reported to be involved in conidiation as well as previously reported chitin synthase genes and acid protease gene (pepB). The expression levels of seven secondary metabolism gene clusters (from a total of 28 clusters) were drastically regulated in the brlA deletion strain, including a downregulated cluster putatively involved in the biosynthesis of the mycotoxins roquefortine C and meleagrin. In addition, the expression levels of most cellulase genes were upregulated in the brlA deletion strain detected by real-time quantitative PCR. The brlA deletion strain also exhibited an 89.1 % increase in cellulase activity compared with the wild-type strain. The results showed that BrlA in P. decumbens not only has a key role in regulating conidiation, but it also regulates secondary metabolism extensively as well as the expression of cellulase genes.  相似文献   

11.
12.
13.
The scab fungus Cladosporium cucumerinum can use pectins and polygalacturonic acid as sole sources of carbon. Cellulose and Ca-polygalacturonate are not available carbon sources for the fungus. When growing on sucrose or pectin, pectinase is produced. In these cases the production of cellulase is insignificant. On a mixture of pectin and carboxymethylcellulose also cellulase is produced. Both pectinase and cellulase are released into the culture filtrate when the fungus grows on cell walls without ionic proteins, whereas only cellulase is released when cell walls with ionic proteins are the carbon source. Pectinase produced by the pathogen can bind to isolated cell walls. The bound pectinase can be extracted with 1 M NaCl from cell walls without ionic proteins, but not from cell walls with ionic proteins. A water-extract or 1 M NaCl-extract of cucumber hypocotyls with visible disease symptoms contains cellulase but no pectinase activity. Lack of pectinase activity in the 1 M NaCl-extract may be due to inhibition by a component that could be extracted by NaCl from the cucumber cell walls.  相似文献   

14.
15.
O‐mannosylation is an essential protein modification in eukaryotes. It is initiated at the endoplasmic reticulum by O‐mannosyltransferases (PMT) that are evolutionary conserved from yeast to humans. The PMT family is phylogenetically classified into PMT1, PMT2 and PMT4 subfamilies, which differ in protein substrate specificity and number of genes per subfamily. In this study, we characterized for the first time the whole PMT family of a pathogenic filamentous fungus, Aspergillus fumigatus. Genome analysis showed that only one member of each subfamily is present in A. fumigatus, PMT1, PMT2 and PMT4. Despite the fact that all PMTs are transmembrane proteins with conserved peptide motifs, the phenotype of each PMT deletion mutant was very different in A. fumigatus. If disruption of PMT1 did not reveal any phenotype, deletion of PMT2 was lethal. Disruption of PMT4 resulted in abnormal mycelial growth and highly reduced conidiation associated to significant proteomic changes. The double pmt1pmt4 mutant was lethal. The single pmt4 mutant exhibited an exquisite sensitivity to echinocandins that is associated to major changes in the expression of signal transduction cascade genes. These results indicate that the PMT family members play a major role in growth, morphogenesis and viability of A. fumigatus.  相似文献   

16.
17.
18.
Agrilus mali Matsumara (Coleoptera: Buprestidae) is a wood‐boring beetle distributed to eastern China that occasionally injures apple species. However, this wood‐boring beetle is new to the wild apple forests (Malus sieversii) of the Tianshan Mountains (western China) and has caused extensive tree mortality. The development of a biological control program for these wild apple forests is a high priority that requires exploration of the life cycle, DNA barcoding and taxonomic status of A. mali. In this study, to determine the diversity of invasive beetles, a fragment of the mitochondrial cytochrome oxidase gene was analyzed. Based on the results, beetles from Gongliu and Xinyuan counties of Xinjiang were identical but differed from those in the apple nursery of Gongliu by a single‐nucleotide substitution. We summarize the taxonomic status, relationships, and genetic distances of A. mali among other Agrilus species using the Tajima‐Nei model in maximum likelihood phylogeny. Analysis revealed that A. mali was closely related to Agrilus mendax and both belong to the Sinuatiagrulus subgenus. The life cycle of A. mali was investigated based on a monthly regular inspection in the wild apple forests of Tianshan. Similar to congeneric species, hosts are injured by larvae of A. mali feeding on phloem tissue, resulting in serpentine galleries constructed between bark and xylem that prevent nutrient transport and leading to tree mortality. Future studies will focus on plant physiological responses to the invasive beetles and include surveys of natural enemies for a potential classical biological control program.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号